Table of Contents

IP Facts

Chapter 1: Overview
- Feature Summary ... 5
- Licensing and Ordering Information 6

Chapter 2: Product Specification
- Standards ... 7
- Performance ... 7
- Port Descriptions .. 8

Chapter 3: Designing with the Core
- General Design Guidelines .. 9
- Clocking ... 9
- Resets .. 10
- Protocol Description ... 10

Chapter 4: Design Flow Steps
- Customizing and Generating the Core 11
- Constraining the Core .. 13
- Simulation ... 14
- Synthesis and Implementation .. 14

Appendix A: Migrating
- Migrating to the Vivado Design Suite 15

Appendix B: Debugging
- Finding Help on Xilinx.com ... 16
- Debug Tools .. 17
- Simulation Debug ... 18
- Hardware Debug .. 18
Introduction

The LogiCORE™ IP Local Memory Bus (LMB) core is used as the LMB interconnect for Xilinx device embedded processor systems. The LMB is a fast, local bus for connecting the MicroBlaze™ processor instruction and data ports to high-speed peripherals, primarily on-chip block RAM (BRAM).

Features

- Efficient, single master bus (requires no arbiter)
- Separate read and write data buses
- Low FPGA resource utilization
- Support for extended address up to 64 bits

<table>
<thead>
<tr>
<th>Core Specifics</th>
<th>Supported Device Family(1)</th>
<th>UltraScale+™ Families</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UltraScale™ Architecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zynq®-7000 All Programmable SoC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 Series</td>
</tr>
<tr>
<td>Supported User Interfaces</td>
<td>LMB</td>
<td></td>
</tr>
<tr>
<td>Resources</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Provided with Core

- Design Files: Vivado: RTL
- Example Design: Not Provided
- Test Bench: Not Provided
- Constraints File: Not Provided
- Simulation Model: VHDL Behavioral
- Supported S/W Driver: N/A

Tested Design Flows(2)

- Design Entry: Vivado® Design Suite
- Simulation: For supported simulators, see the Xilinx Design Tools: Release Notes Guide
- Synthesis: Vivado Synthesis

Support

Provided by Xilinx at the Xilinx Support web page

Notes:

1. For a complete listing of supported devices, see the Vivado IP Catalog.
2. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.
Overview

A MicroBlaze™ processor system using two LMB IP cores is shown in Figure 1-1. This system shows the use of both Instruction (I) and Data (D) side LMB buses connecting to a dual-ported BRAM block through separate LMB BRAM interface controllers. For information on the LMB BRAM Interface Controller see the LMB BRAM Interface Controller LogiCORE IP Product Guide (PG112) [Ref 1].

Feature Summary

The LMB core is used as the local memory bus interconnect for embedded processor systems. The LMB is a fast, local bus for connecting the MicroBlaze processor instruction and data ports to high-speed peripherals, primarily on-chip block RAM (BRAM).

The LMB supports an extended address of up to 64 bits.
Licensing and Ordering Information

This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado® Design Suite under the terms of the Xilinx End User License. Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information about pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.
Chapter 2

Product Specification

Standards

The LogiCORE™ IP Local Memory Bus (LMB) core implements the Processor Local Bus. The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a minimum number of control signals and a simple protocol to ensure that local block RAM are accessed in a single clock cycle. All LMB signals are active-High. See the MicroBlaze Processor Reference Guide (UG984) [Ref 2], Local Memory Bus (LMB) Interface Description, for a detailed definition of the bus.

Performance

The frequency and latency of the Local Memory Bus core are optimized for use with MicroBlaze™. This means that the frequency targets are aligned to MicroBlaze targets as well as the 1 cycle latency optimized for MicroBlaze instruction and data access.

Maximum Frequencies

For details about performance, visit Performance and Resource Utilization.

Latency

Data read from block RAM is available the clock cycle after the address strobe is asserted. Data write is performed the clock cycle after the address strobe is asserted.

Throughput

The nominal throughput is one read or write access every clock cycle.
Port Descriptions

The I/O ports for the LMB core are listed in Table 2-1.

Table 2-1: LMB Core I/O Ports

<table>
<thead>
<tr>
<th>Port Name</th>
<th>MSB:LSB</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMB_CLK</td>
<td></td>
<td>I</td>
<td>LMB Clock</td>
</tr>
<tr>
<td>SYS_Rst</td>
<td></td>
<td>I</td>
<td>External System Reset</td>
</tr>
<tr>
<td>LMB_Rst</td>
<td></td>
<td>O</td>
<td>LMB Reset</td>
</tr>
<tr>
<td>M_ABus</td>
<td>0:C_LMB_AWIDTH-1</td>
<td>I</td>
<td>Master Address Bus</td>
</tr>
<tr>
<td>M_ReadStrobe</td>
<td></td>
<td>I</td>
<td>Master Read Strobe</td>
</tr>
<tr>
<td>M_WriteStrobe</td>
<td></td>
<td>I</td>
<td>Master Write Strobe</td>
</tr>
<tr>
<td>M_AddrStrobe</td>
<td></td>
<td>I</td>
<td>Master Address Strobe</td>
</tr>
<tr>
<td>M_DBus</td>
<td>0:C_LMB_DWIDTH-1</td>
<td>I</td>
<td>Master Data Bus</td>
</tr>
<tr>
<td>M_BE</td>
<td>0:C_LMB_DWIDTH/8-1</td>
<td>I</td>
<td>Master Byte Enables</td>
</tr>
<tr>
<td>Sl_DBus</td>
<td>0:C_LMB_DWIDTH*C_LMB_NUM_SLAVES-1</td>
<td>I</td>
<td>Slave Data Bus</td>
</tr>
<tr>
<td>Sl_Ready</td>
<td>0:C_LMB_NUM_SLAVES-1</td>
<td>I</td>
<td>Slave Data Ready</td>
</tr>
<tr>
<td>Sl_Wait</td>
<td>0:C_LMB_NUM_SLAVES-1</td>
<td>I</td>
<td>Slave Data Wait</td>
</tr>
<tr>
<td>Sl_UE</td>
<td>0:C_LMB_NUM_SLAVES-1</td>
<td>I</td>
<td>Slave Uncorrectable Data Error</td>
</tr>
<tr>
<td>Sl_CE</td>
<td>0:C_LMB_NUM_SLAVES-1</td>
<td>I</td>
<td>Slave Correctable Data Error</td>
</tr>
<tr>
<td>LMB_ABus</td>
<td>0:C_LMB_AWIDTH-1</td>
<td>O</td>
<td>LMB Address Bus</td>
</tr>
<tr>
<td>LMB_ReadStrobe</td>
<td></td>
<td>O</td>
<td>LMB Read Strobe</td>
</tr>
<tr>
<td>LMB_WriteStrobe</td>
<td></td>
<td>O</td>
<td>LMB Write Strobe</td>
</tr>
<tr>
<td>LMB_AddrStrobe</td>
<td></td>
<td>O</td>
<td>LMB Address Strobe</td>
</tr>
<tr>
<td>LMB_ReadDBus</td>
<td>0:C_LMB_DWIDTH-1</td>
<td>O</td>
<td>LMB Read Data Bus</td>
</tr>
<tr>
<td>LMB_WriteDBus</td>
<td>0:C_LMB_DWIDTH-1</td>
<td>O</td>
<td>LMB Write Data Bus</td>
</tr>
<tr>
<td>LMB_Ready</td>
<td></td>
<td>O</td>
<td>LMB Data Ready</td>
</tr>
<tr>
<td>LMB_Wait</td>
<td></td>
<td>O</td>
<td>LMB Data Wait</td>
</tr>
<tr>
<td>LMB_UE</td>
<td></td>
<td>O</td>
<td>LMB Uncorrectable Data Error</td>
</tr>
<tr>
<td>LMB_CE</td>
<td></td>
<td>O</td>
<td>LMB Correctable Data Error</td>
</tr>
<tr>
<td>LMB_BE</td>
<td>0:C_LMB_DWIDTH/8-1</td>
<td>O</td>
<td>LMB Byte Enables</td>
</tr>
</tbody>
</table>
Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the core.

General Design Guidelines

In a typical MicroBlaze™ system the LMB core is typically connected as in Figure 3-1.

For additional examples, and a description of how Error Correcting Codes (ECC) are used with the Local Memory Bus, see the LMB BRAM Interface Controller LogiCORE IP Product Guide (PG112) [Ref 1].

Clocking

The LMB core is fully synchronous with all clocked elements clocked with the LMB_CLK.
Resets

The `LMB_Rst` is the master reset input signal for the LMB core.

Protocol Description

See the LMB Interface Description timing diagrams in the *MicroBlaze Processor Reference Guide* (UG984) [Ref 2].
Chapter 4

Design Flow Steps

This chapter describes customizing and generating the core, constraining the core, and the simulation, synthesis and implementation steps that are specific to this IP core. More detailed information about the standard Vivado® design flows and the IP integrator can be found in the following Vivado Design Suite user guides:

- Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 3]
- Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4]
- Vivado Design Suite User Guide: Getting Started (UG910) [Ref 5]
- Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 6]

Customizing and Generating the Core

This section includes information about using Xilinx tools to customize and generate the core in the Vivado Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 3] for detailed information. IP integrator might auto-compute certain configuration values when validating or generating the design. To check whether the values do change, see the description of the parameter in this chapter. To view the parameter value, run the validate_bd_design command in the Tcl console.

You can customize the IP for use in your design by specifying values for the various parameters associated with the IP core using the following steps:

1. Select the IP from the Vivado IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4] and the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 5].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE). The layout depicted here might vary from the current version.
The LMB core parameters are included on a single configuration page, shown in Figure 4-1.

Figure 4-1: LMB Core Parameter Page

- **LMB Number of Slaves** - Sets the number of ports available to connect to MicroBlaze™.
- **C Ext Reset High** - Defines that LMB_Rst is active-High.

LMB Memory Bus Parameters

Table 4-1: LMB Core Design Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Feature/Description</th>
<th>Allowable Values</th>
<th>Default Value</th>
<th>VHDL Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_LMB_NUM_SLAVES</td>
<td>Number of LMB Slaves</td>
<td>1–16</td>
<td>4</td>
<td>integer</td>
</tr>
<tr>
<td>C_LMB_AWIDTH</td>
<td>LMB Address Bus Width</td>
<td>32–64</td>
<td>32</td>
<td>integer</td>
</tr>
<tr>
<td>C_LMB_DWIDTH</td>
<td>LMB Data Bus Width</td>
<td>32</td>
<td>32</td>
<td>integer</td>
</tr>
<tr>
<td>C_EXT_RESET_HIGH</td>
<td>Level of external reset</td>
<td>0 = Active-Low reset, 1 = Active-High reset</td>
<td>1</td>
<td>integer</td>
</tr>
</tbody>
</table>

Allowable Parameter Combinations

There are no restrictions on parameter combinations.
Parameter - Port Dependencies

The LMB core parameter-port dependencies are listed in Table 4-2.

Table 4-2: Parameter-Port Dependencies

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Ports (Port width depends on parameter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_LMB_NUM_SLAVES</td>
<td>Sl_DBus, Sl_Ready, Sl_Wait, Sl_CE</td>
</tr>
<tr>
<td>C_LMB_AWIDTH</td>
<td>M_ABus, LMB_ABus</td>
</tr>
<tr>
<td>C_LMB_DWIDTH</td>
<td>M_DBus, M_BE, SI_DWIDTH, LMB_ReadDBus, LMB_WriteDBus, LMB_BE</td>
</tr>
<tr>
<td>C_EXT_RESET_HIGH</td>
<td>none</td>
</tr>
</tbody>
</table>

User Parameters

Table 4-3 shows the relationship between the fields in the Vivado IDE and the User Parameters (which can be viewed in the Tcl console).

Table 4-3: Vivado IDE Parameter to User Parameter Relationship

<table>
<thead>
<tr>
<th>Vivado IDE Parameter</th>
<th>User Parameter</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMB Number of Slaves</td>
<td>C_LMB_NUM_SLAVES</td>
<td>1</td>
</tr>
<tr>
<td>C Ext Reset High</td>
<td>C_EXT_RESET_HIGH</td>
<td>1</td>
</tr>
</tbody>
</table>

Constraining the Core

This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints

This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections

This section is not applicable for this IP core.

Clock Frequencies

This section is not applicable for this IP core.

Clock Management

The LMB core is fully synchronous with all clocked elements clocked by the LMB_CLK input.
To operate properly when connected to MicroBlaze™, the LMB_Clk must be the same as MicroBlaze clock.

Clock Placement

This section is not applicable for this IP core.

Banking

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

Simulation

For comprehensive information about Vivado simulation components, as well as information about using supported third-party tools, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 6].

IMPORTANT: For cores targeting 7 series or Zynq-7000 devices, UNIFAST libraries are not supported. Xilinx IP is tested and qualified with UNISIM libraries only.

Synthesis and Implementation

For details about synthesis and implementation, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 4].
Appendix A

Migrating

This appendix contains information about upgrading to a more recent version of the IP core.

Migrating to the Vivado Design Suite

For information on migrating to the Vivado® Design Suite, see the *ISE to Vivado Design Suite Migration Guide* (UG911) [Ref 7].
Appendix B

Debugging

This appendix includes details about resources available on the Xilinx Support website and debugging tools.

Finding Help on Xilinx.com

To help in the design and debug process when using the LMB core, the Xilinx Support web page contains key resources such as product documentation, release notes, answer records, information about known issues, and links for obtaining further product support.

Documentation

This product guide is the main document associated with the LMB core. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page or by using the Xilinx® Documentation Navigator.

Answer Records

Answer Records include information about commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main Xilinx support web page. To maximize your search results, use proper keywords such as

- Product name
- Tool message(s)
- Summary of the issue encountered

A filter search is available after results are returned to further target the results.
Appendix B: Debugging

Answer Records for the LMB Core

- AR54431

Technical Support

Xilinx provides technical support at the Xilinx Support web page for this LogiCORE™ IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support if you do any of the following:

- Implement the solution in devices that are not defined in the documentation.
- Customize the solution beyond that allowed in the product documentation.
- Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools

The main tool available to address LMB design issues is the Vivado® Design Suite debug feature.

Vivado Design Suite Debug Feature

The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly into your design. The debug feature also allows you to set trigger conditions to capture application and integrated block port signals in hardware. Captured signals can then be analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a design running in Xilinx devices.

The Vivado logic analyzer is used to interact with the logic debug IP cores, including:

- ILA 2.0 (and later versions)
- VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 8].

Reference Boards

All 7 series Xilinx development boards support the LMB core. These boards can be used to prototype designs and establish that the core can communicate with the system.
Appendix B: Debugging

Simulation Debug

The simulation debug flow for Mentor Graphics Questa Simulator (QuestaSim) is described below. A similar approach can be used with other simulators.

- Check for the latest supported versions of QuestaSim in the Xilinx Design Tools: Release Notes Guide. Is this version being used? If not, update to this version.
- If using Verilog, do you have a mixed mode simulation license? If not, obtain a mixed-mode license.
- Ensure that the proper libraries are compiled and mapped. In the Vivado Design Suite this can be done using Flow > Simulation Settings.
- Have you associated the intended software program for the MicroBlaze™ processor with the simulation? Use the command Tools > Associate ELF Files in Vivado Design Suite.
- When observing the traffic on the LMB interface connected to the LMB core, see the MicroBlaze Processor Reference Guide (UG984) [Ref 2] for the LMB timing.

Hardware Debug

This section provides debug steps for common issues. The Vivado Design Suite debug feature is a valuable resource to use in hardware debug. The signal names mentioned in the following sections can be probed using the debug feature to debug specific problems. Many of these common issues can also be applied to debugging design simulations.

General Checks

Ensure that all the timing constraints were met during implementation.

- Does it work in post-place and route timing simulation? If problems are seen in hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are active and clean.
- If using MMCMs in the design, ensure that all MMCMs have obtained lock by monitoring the LOCKED port.

LMB Checks

To monitor the LMB interface, the signals `LMB_ABus`, `LMB_WriteDBus`, `LMB_ReadStrobe`, `LMB_AddrStrobe`, `LMB_WriteStrobe`, `LMB_BE`, `Sl_DBus`, and `Sl_Ready` can be connected to the Vivado debug feature. When Error Correction Codes are used, the signals `Sl_Wait`, `Sl_CE`, and `Sl_UE` can also be added. To sample the interface signals, the Vivado debug feature should use the `LMB_Clk` clock signal.
Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

References

1. LogiCORE IP LMB BRAM Interface Controller Product Guide (PG112)
7. ISE to Vivado Design Suite Migration Guide (UG911)

Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/06/2016</td>
<td>3.0</td>
<td>Updated with description of extended addressing.</td>
</tr>
<tr>
<td>11/18/2015</td>
<td>3.0</td>
<td>Added support for UltraScale+ families.</td>
</tr>
<tr>
<td>06/24/2015</td>
<td>3.0</td>
<td>Moved performance and resource utilization data to the web.</td>
</tr>
<tr>
<td>03/20/2013</td>
<td>1.0</td>
<td>This Product Guide replaces PG087. There are no documentation changes for this release.</td>
</tr>
</tbody>
</table>
Appendix C: Additional Resources and Legal Notices

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

© Copyright 2013–2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.