

Preparing the build system for debugging

Figure 30: Application/System Configuration Menu

3. Scroll down the PetaLinux Configuration menu to Debugging:

Figure 31: PetaLinux Configuration - Scrolling down to Debugging option

4. Select the Debugging sub-menu:

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 26

Preparing the build system for debugging

Figure 32: Debugging Menu

5. Ensure that build debugable libraries and build debugable applications are all selected.

6. From the top level menu, navigate down to the Root Filesystem Packages > base > external-csl-
toolchain sub-menu and enable the gdbserver package:

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 27

http://www.xilinx.com

Debugging Applications with GDB

Figure 33: Root Filesystem Packages - GDB Server

7. Exit Application/System Configuration and select Yes to save the configuration.

8. Rebuild the PetaLinux image, select All to rebuild the image.

Figure 34: PetaLinux Build Menu

Debugging Applications with GDB
1. Boot your board (or QEMU) with the new image created previously.

2. Run gdbserver with the user application on the PetaLinux console:

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 28

http://www.xilinx.com

Debugging Applications with GDB

gdbserver host:1234 /bin/myapp
Process /bin/myapp created; pid = 73
Listening on port 1234

1234 is the "gdbserver" port - it can be any unused port number

3. Open the Run > Debug Configurations menu item.

Figure 35: Debug Configurations... Menu

4. Create a new PetaLinux Debug configuration. Select the target project as myapp and the target
executable as myapp.

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 29

http://www.xilinx.com

Debugging Applications with GDB

Figure 36: PetaLinux Debug Launch Configuration

5. Change to the Connect tab of the configuration and set the target IP address and Port.

• Use the IP address of the PetaLinux system, e.g.: 192.168.0.10. If you are not sure about the IP
address, run ifconfig on the target console to check.

• Use the port 1234. If you chose a different gdbserver port number in the earlier step, use that value
instead.

Figure 37: PetaLinux Debug Launch Configuration, Connect Tab

6. Click Apply to save the settings of the Launch Configuration, and click Debug to begin debugging.

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 30

http://www.xilinx.com

Debugging Applications with GDB

TIP: You can access your Favorite/Recent Debug Launch Configurations and the Debug Configurations...
dialog from the Debug Toolbar Menu,

Figure 38: Debug Toolbar Menu

7. The Debugging Session will be launched, and Eclipse will switch to the Debug Perspective.

Figure 39: Debug Session

8. The session is now connected to the remote GDB Server, and has started the application, breaking at
the function main.

9. Add a break point to the application by double clicking on the side strip in the Code window for the
application code file "myapp.c". A small blue breakpoint icon should appear in the side strip for each
breakpoint in the code file.

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 31

http://www.xilinx.com

Importing Existing PetaLinux Applications and Libraries

Figure 40: Code Window with Breakpoints active

10. Run the program, using the Resume command via the Control Flow toolbar.

Figure 41: Control Flow Toolbar

11. Try the Step into and Step over commands. Try setting and removing breakpoints.

12. When the program finishes, the GDB server application on the target system will exit. Here is an example
of messages shown on the console:

~ # gdbserver host:1234 /bin/myapp
Process /bin/myapp created; pid = 58
Listening on port 1234
Remote debugging from host 192.168.0.9
Hello, PetaLinux World!
cmdline args:
/bin/myapp

Child exited with status 0
GDBserver exiting
~ #

Importing Existing PetaLinux Applications and Libraries
To work with projects inside the Eclipse environment the projects must exist in the Eclipse workspace. To work
with existing projects (applications, libraries and kernel modules) that were created by the command line tools
petalinux-new-... they must first be imported into the Eclipse workspace using the Import Wizard.

1. Open the Import Wizard via the File > Import menu.

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 32

http://www.xilinx.com

Importing Existing PetaLinux Applications and Libraries

Figure 42: Import Wizard Menu

2. Select the PetaLinux > Import Existing User Application/Library wizard and click Next.

Figure 43: Import Wizard

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 33

http://www.xilinx.com

Importing Existing PetaLinux Applications and Libraries

3. Input the location of the application/library to import. This application/library must already be inside the
PetaLinux working tree. Once entered click Finish.

Figure 44: PetaLinux Import Project Wizard

4. The project will be imported.

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 34

http://www.xilinx.com

Importing Existing PetaLinux Applications and Libraries

Figure 45: PetaLinux Import Project Wizard

5. The project is now accessible as an Eclipse project.

Figure 46: PetaLinux Project Imported

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 35

http://www.xilinx.com

Additional Resources

References
• PetaLinux SDK Application Development Guide (UG981)

• PetaLinux SDK Board Bringup Guide (UG980)

• PetaLinux SDK Eclipse Plugin Guide (UG979)

• PetaLinux SDK Firmware Upgrade Guide (UG983)

• PetaLinux SDK Getting Started Guide (UG977)

• PetaLinux SDK Installation Guide (UG976)

• PetaLinux SDK QEMU System Simulation Guide (UG982)

Eclipse Plugin Guide
UG979 (v2013.04) April 22, 2013

www.xilinx.com 36

http://www.xilinx.com

