Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© Copyright 1995 - 2012. Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/01/2011</td>
<td>13.1</td>
<td>Updated for the 13.1 Release. The Chapters “Download and Installation” and “Obtaining and Managing a License” have been moved to a new document titled ISE Design Suite 13: Installation and Licensing Guide (ii.l.pdf)</td>
</tr>
<tr>
<td>07/06/2011</td>
<td>13.2</td>
<td>Updated for the 13.2 Release.</td>
</tr>
<tr>
<td>10/26/2011</td>
<td>13.3</td>
<td>Updated for the 13.3 Release.</td>
</tr>
<tr>
<td>01/18/2012</td>
<td>13.4</td>
<td>Updated for the 13.4 Release.</td>
</tr>
<tr>
<td>01/23/2012</td>
<td>13.4</td>
<td>Changed supported MATLAB version to 2011a/2011b to align to v13.4</td>
</tr>
</tbody>
</table>
Chapter 1: What’s New in ISE Design Suite

- **ISE Design Suite 13.4** .. 5
 - Highlights for this Release .. 5
 - Important Release Information .. 8
- **ISE Design Suite 13.3** .. 9
 - Highlights for this Release .. 9
 - Important Release Information .. 15
- **ISE Design Suite 13.2** .. 19
 - Highlights for this Release .. 19
 - Important Release Information ... 23
- **ISE Design Suite 13.1** ... 28
 - Highlights for this Release ... 28
 - Important Release Information ... 34

Chapter 2: What’s New in PlanAhead Design Tool

- **PlanAhead Design Tool 13.4** ... 39
 - New Features .. 39
- **PlanAhead Design Tool 13.3** ... 39
 - New Features .. 40
- **PlanAhead Design Tool 13.2** .. 40
 - GUI and Project Improvements ... 40
 - Pin Planning Features .. 41
- **PlanAhead Design Tool 13.1** .. 42
 - ISE Simulator Integration .. 42
 - Hierarchical Design Methodology Support 42
 - Team-Based Design Support ... 42
 - Design Preservation RTL Support .. 43
 - Partial Reconfiguration Support ... 43
 - Project Navigator Project File (.xise) Support 43
 - New and Modified Project Management Features 43
 - Graphical User Interface Enhancements 44
 - Main Menu Enhancements .. 44
 - Netlist View Additions and Modifications 45
 - Device View Enhancements .. 45
 - XPA Integration ... 45
 - RTL Design Additions and Modifications 46

Chapter 3: Architecture Support and Requirements

- **Operating Systems** .. 49
 - Microsoft Windows .. 49
 - Linux Support ... 50
- **Architectures** ... 51
- **Compatible Third-Party Tools** ... 52
- **System Requirements** ... 53
 - Cable Installation Requirements ... 56
 - Equipment and Permissions .. 57
 - ChipScope Pro Analyzer ... 57
Chapter 4: Technical Support, Services, and Documentation

Technical Support 59
Education Services 59
Documentation 60
 Context-Sensitive Help 60
 Software Manuals 60
 Third-Party Licenses 60
Chapter 1

What’s New in ISE Design Suite

ISE Design Suite 13.4

Highlights for this Release

All Editions

Device Support (Virtex®-7 / Kintex™-7 / Artix™-7)

- Virtex-7 XT, Artix-7 and Automotive XA Artix-7 FPGA families now Public Access
- General Engineering Sample (GES) support for XC7K325T and XC7VX485T devices
- Low Voltage (0.9V) support for -2L devices
- Post-implementation IBIS file support provided via PlanAhead Pin-Planner and write_ibis Tcl command
 - 7 series IBIS support is only through PlanAhead and not available through IBISWriter in ISE
- SSN Predictor support provided via PlanAhead Pin-Planner and report_ssn Tcl command for the following devices and packages:
 - Kintex-7
 - XC7K325T - FFG676, FFG900
 - XC7K410T - FFG676, FFG900
 - XC7K480T - FFG901, FFG1156
 - Virtex-7 XT
 - XC7VX485T - FFG1157, FFG1761, FFG1927, FFG1930
- Updated GTXE2 and GTHE2 SecureIP simulation models
- The GTHE2 model includes support for all Xilinx-supported simulators
- Partial Reconfiguration device support expanded
- Virtex-7 XT XC7VX330T, XC7VX415T, XC7VX550T and XC7VX690T
- Artix-7 XC7A100T
- ChipScope and iMPACT support
- IBERT
 - Kintex-7 GTX core, v2.01a (7K325T)
 - Virtex-7 GTX core, v2.01a (7VX485T)
 - New 2D Eye Scan RX Margin Analysis tool support
Chapter 1: What’s New in ISE Design Suite

- ChipScope device programming and debug support for Kintex-7 and Virtex-7 devices
- iMPACT basic and advanced programming support for Kintex-7 and Virtex-7 devices

CORE Generator Enhancements
- 2x improvement in CORE Generator startup speed
- Added “Get License” button to the “View License Status” dialog to provide quick access to the Xilinx Product Licensing site. This enables users to generate license keys for evaluation IP and IP for which they have purchased licenses.

Embedded Edition

Embedded Development Kit (EDK)
- IP and XPS support for RTL-level simulation using Synopsys VCS© and VCS MX
- AXI USB 2.0 Device core supports 800 ps timing for ULPI designs
- Change request updates to IP, see individual core release notes for details

DSP Edition

System Generator for DSP
- Production support for MATLAB 2011a and 2011b
- Mentor Graphics Questa® Advanced Simulator support for the HDL import flow
- 7x simulation performance speed-up for FIR Compiler v6.3
- AXI4 Support
 - Viterbi Decoder
 - Convolution Encoder
 - RS Encoder

Intellectual Property (IP)

Device Support
- Artix-7, Artix-7 Low Voltage, Automotive XA Artix-7, and Virtex-7 XT device family support in the ISE 13.4 tools is now Public Access. The set of cores supporting these families provide Pre-Production support.

New IP Cores
- MicroBlaze™ Micro Controller System (MCS) v1.0
 - Pre-configured, standalone processor system targeted for controller applications includes a size optimized MicroBlaze processor, local memory for program and data storage, as well as tightly coupled GPIO, timers, interrupt controllers, and other standard peripherals.
- 3GPP Mixed Mode Turbo Decoder v1.0
 - Provides a high-performance, compact Turbo Decoder which meets the 3GPP LTE and UMTS wireless specifications.
- QSGMII (Ethernet Quad Serial Gigabit Media Independent Interface PCS/PMA) v1.1
• Provides an Ethernet Physical Coding Sublayer (PCS) with an aggregation of four 10/100/1000M ports to one five gigabit transceiver. This IP is included with ISE at no additional charge.

Updates to Existing IP
• Bus Interface and I/O
 • PCI v4 - Artix-7 support
 • XAUI v10.1 - DXAUI (4x6.25G) support for 7 series FPGA devices
• Communication and Networking
 • Aurora 64B/66B - AXI4-Stream support and support for Virtex-7 and Kintex-7 GTX transceiver.
• 7 Series FPGAs Transceivers Wizard v1.6
 • GUI modified to display 20/40 as internal data path width for 8B10B encoding
 • Updated XAUI, RXAUI (optional ports brought out to the top-level wrapper)
 • Added the following protocol template support for 7 series GTH transceivers:
 - CEI-6 and Interlaken @ 6.5 Gbps
 - 10GBASE-KR @ 10.3125 Gbps
 - CEI-11 @ 11.1 Gbps
 - CAUI @ 10.3125 Gbps
 - OTU-4 @ 11.18 Gbps
 - Additional “Start from Scratch” feature for the 7 series GTH transceiver enables users to configure the GTH primitive for other protocols
 • Added the following protocol template support for 7 series GTX transceivers:
 - QSGMII
 - PCIE Gen1/Gen2 Protocol (PIPE wrapper delivered through Wizard)
 - Attributes updated to support General ES Silicon (GTX) using characterization updates
• 7 Series FPGAs Transceivers Wizard v1.5 Rev 1
 • Added GTX transceiver support for Initial ES silicon (receive CDR configuration attribute update)
• Virtex-6 GTH Wizard v1.10
 • Improved GTH initialization sequence and updated attribute default value (PMA loopback Control Lane)
• Virtex-6 GTX Wizard v1.12
 • Updated SATA protocol template (comma modified to K28.5)
 • Updated SRIO protocol template to reflect updated characterization data
• Memories and Storage Elements
 • Block Memory Generator v6.3 - Added example testbench support
 • FIFO Generator v8.4 - New Packet FIFO option for AXI4 interface configurations and example testbench support
• Audio, Video, and Image Processing
Chapter 1: What's New in ISE Design Suite

- AXI VDMA v5_00_a - Added support for up to 32 frame stores in Gen-Lock frame buffer synchronization, support for dynamic video format changes, support for 8-bit multiples in primary AXI stream data, and Artix-7 support.

More Information
- A comprehensive listing of cores that have been updated in the 13.4 release can be viewed at http://www.xilinx.com/ipcenter/coregen/updates_13_4.htm
- For more information on IP New Features, refer to the IP Release Notes Guide.

Important Release Information

Documentation

The latest documentation is located at http://www.xilinx.com/support and has known changes from the documentation on the DVD image.

Known Issues

Known Issues for this release are found on the Xilinx website at the following locations:

Device Support

7 Series FPGAs
- The following Artix-7 devices are still under license control and will be removed in ISE Design Suite 14.1
 - XC7A8
 - XC7A15
 - XC7A30T
 - XC7A50T
 - ISE will issue an error at the implementation phase if these devices are targeted. Please modify designs to use a supported part in this device family.
- There is no support for the Artix-7 GTPE2 component in this release
- All designs utilizing a GTX component targeting General ES silicon must use output from the 7 series FPGAs Transceiver Wizard v1.6 contained in the 13.4 release. If you previously ran the wizard and plan to target General ES rather than Initial ES silicon, you must re-run the wizard and use the new output in your design.
- All customers using MIG 7 series generated DDR3 or DDR2 cores in their design must upgrade to MIG 7 series v1.4 found in the 13.4 release due to pin out rules changes.
- Device-Specific license is no longer required for Artix-7 and Virtex-7 XT devices starting in the 13.4 release.
• Speed files, Power, and Packages are in ADVANCED status. Refer to the Virtex-7/Kintex-7 FPGA Data Sheet: DC and Switching Characteristics for a detailed explanation on the different status.

• SSO Limit Tables - The following device-package combinations are supported:
 • Artix-7
 - XC7A100T - FTG256, CSG324, FGG484, FGG676
 - XC7A200T - FBG484, FBG676, FFG1156
 - XC7A350T - FBG484, FBG676, FFG1156
 • Virtex-7 XT
 - XC7VX330T - FFG1157, FFG1761
 - XC7VX415T - FFG1157, FFG1158, FFG1927
 - XC7VX550T - FFG1158, FFG1927
 - XC7VX690T - FFG1157, FFG1158, FFG1761, FFG1926, FFG1927, FFG1930
 - XC7VX980T - FFG1926, FFG1928, FFG1930
 • Beginning with ISE Design Suite 13.2, Xilinx requires users to select all IOSTANDARDs and pin placement in their design prior to generating a bitstream. Please see the following Xilinx Answer Record for more information: http://www.xilinx.com/support/answers/41615.htm
 • All designs targeting Virtex-7 XT and Artix-7 devices will need to be reimplemented in ISE Design Suite 14.1
 • For additional Known Issues, please see the following Xilinx Answer Record: http://www.xilinx.com/support/answers/40905.htm

AXI4 IP

In general, the AXI4 interface is supported by the latest version of an IP for Virtex-7, Kintex-7, Virtex-6 and Spartan-6 device families. Older “Production” versions of IP continue to support the legacy interface for the respective core on Virtex-6, Spartan-6, Virtex-5, Virtex-4, and Spartan-3 device families only.

• The latest versions of CORE Generator IP have been updated with Production AXI4 interface support. For more details AXI IP support information see http://www.xilinx.com/ipcenter/axi4_ip.htm
• For general information on AXI4 support, see http://www.xilinx.com/ipcenter/axi4.htm

ISE Design Suite 13.3

Highlights for this Release

Device Support

• Virtex®-7 and Kintex™-7
 • For Virtex-7 and Kintex-7, the device list has been updated with bitstream enablement

• Virtex-7 XT and Artix™7

• Limited Access
These devices are visible but require a license to implement. Please refer to the topic 7 Series Devices in Limited Access – Virtex-7 XT and Artix-7 for details.

- ISim Hardware Co-Simulation support Virtex-7 (through JTAG)
- 7 Series Devices in Limited Access
 - In this release, the following devices are Limited Access and are license controlled:
 - Xilinx Virtex-7 XT, Virtex-7 2000T and 1500T
 - Xilinx Artix-7
 - Limited Access devices are currently Beta-level quality and access requires a device specific license. Contact your Sales Representative for more information about obtaining a required license.
 - For Virtex-7, Kintex-7, and Artix-7 devices PlanAhead performs a preliminary bank level SSN analysis intended to identify switching noise problems.

OS Support

- ISE Design Suite 13.3 adds Red Hat Enterprise Linux 6 to the list of officially supported operating systems.

All Editions

PlanAhead Enhancements

Please refer to What’s New in PlanAhead Design Tool for details.

Device Support Changes

- 7 Series -2L (Low Voltage) and -2G (-3 GT performance and slower fabric performance)
- New Artix-7 devices enabled: 7A8, 7A15 (Limited Access)
- Design Preservation and Team Design in Artix-7 and Virtex-7 XT (Limited Access)

ChipScope Enhancements

- Virtex-7 XT (7VX485T only) support
 - ChipScope: Basic device programming support
 - ChipScope: Analyzer logic debug support
- ChipScope Core Generation for ICON, ILA, VIO, ATC2 for Artix-7 (Limited Access)
- IBERT Support for Kintex-7 and Virtex-7 GTX

iMPACT Enhancements

- Virtex-7 XT (7VX485T only) support
 - iMPACT: Advanced programming: eFUSE programming support
 - iMPACT: Direct FPGA programming and device verifying via JTAG
 - iMPACT: Indirect BPI/SPI Flash programming via JTAG
Embedded Edition

Embedded Development Kit Enhancements

- Enhancements to Base System Builder (BSB)
 - All user input now captured on two pages
 - Pre-production support for the Kintex-based KC705 platform
 - Support for single or dual AXI4-based MicroBlaze™ Processor designs
 - New user design setting for selection of Area or Throughput
 - BSB uses a 1:1 clocking ratio for AXI4 and AXI4-Lite interfaces when available
- New IP Catalog option to display only AXI4 IP
- Support for simulation of external DDRx memory
- Create/Import IP wizard now supports the creation of AXI4 master, AXI4-Lite master, and AXI4-Stream IP
- Platgen performance improved through optional parallel-synthesis support when run on multi-core host machines
- Questa Advanced Simulator support
- 7 Series PLL support in Clock Wizard
- New Master/Slave Information tab in AXI4 interconnect configuration dialog

Platform Studio

- New Graphical Design View
 - Block diagram based system connectivity view
 - Clock, reset, interrupt, port, and bus views and filtering
 - Allows concurrent views of System Assembly View and Graphical Design View
- New PlanAhead-like Welcome Window and Design Flows via Navigation Pane
 - Better consistency across Xilinx design tools
 - Design flows include Design, Implementation, and Simulation
 - Available when invoking Platform Studio in standalone mode
- New graphical interface theme, with new icons, images, and logos
- Project loading significantly faster than previous versions
- Improved external memory simulation with integration of Memory Interface Generator models
- Redesigned IP configuration dialogs
- Smart IP catalog with scan, search, and filter functions
- Support for 128 bit wide BRAM with ECC
- Verilog support for AXI master userlogic template created by CIP wizard

Software Development Kit Enhancements

- Improved Debugger Communication
 - SDK (Software Development Kit) uses an improved protocol to communicate with the XMD JTAG debugger, enabling more robust asynchronous and synchronous messaging. This internal change is transparent to the user, it facilitates better error handling and management of debugging sessions.
Chapter 1: What's New in ISE Design Suite

- The Program Flash Memory feature can be used to program Kintex-7 FPGA KC705 evaluation board’s Linear BPI Flash. SPI Flash programming is not supported.
- Other Changes
 - Flash programming failure corrected when MicroBlaze Branch Target Cache (BTC) is enabled
 - Program FPGA ELF selection restored properly on the 2nd invocation
 - BSS and SBSS sections aligned to 4 byte boundary for PowerPC
 - Issue corrections and incremental enhancements

Embedded IP

- New support for AXI XADC, a 32-bit slave peripheral that provides the controller interface for System Monitor XADC hard macro on the Virtex-7 and Kintex-7 families of FPGA
- Enhancements AXI Timer IP to support 64 Bit Timer/Counter when used in Cascade mode
- Enhanced AXI USB 2.0 Device, supports high bandwidth ISOC transfer support and improved BRAM utilization
- Enhanced AXI VDMA
 - Added Flush on Frame Sync feature
 - Added Dynamic clock rate change
 - Added Dynamic line buffer thresholds
 - Added Optional frame advancement on error
- Enhanced AXI DMA, added 512 Bit data width support
- AXI interconnect enhanced with optional packet-FIFO capability

DSP Edition

System Generator for DSP

- Introducing single, double and custom precision floating-point support
 - New floating-point blockset
 - Leverages Floating Point Operator LogiCORE v6.0
 - Single precision floating-point FFT
 - Supports automatic data type propagation
 - Bit and cycle accurate simulation support
 - Hardware Co-Simulation support using Simulink and M-code
 - EDK PCORE export for single precision
 - Ships with the following demos:
 - Matrix Inversion using squared Givens Rotation
- Support added for Artix-7 and Virtex-7 XT
- Capability added to generate PlanAhead projects
 - Supports System Generator design as a top level module for synthesis and implementation
 - Allows user to select synthesis and implementation strategies for HDL and bitstream generation flow
• Provides TCL script for verification of Simulink simulation with behavioral and back annotated implementation

• AXI4 Support
 • Production support for VDMA Interface 4.0
 • AXI FIFO with AXI4-Stream interface
 • CORDIC
 • FIR Compiler v6.3
 • Interleaver/De-interleaver 7.0
 • Reed-Solomon Decoder 8.0

• Production support of MATLAB 2011a

CORE Generator and IP

• CORE Generator™ IP with Artix-7 and Virtex-7 XT Support
 Artix-7 and Virtex-7 XT device family support in this release continues to be Limited Access. The set of cores supporting Artix-7 and Virtex-7 XT provide Beta support for these two device families. For a comprehensive listing of IP cores supporting these new device families, click the IP in this Release tab at http://www.xilinx.com/ipcenter/coregen/updates_13_3.htm.

The following describes what’s new in the CORE Generator™ tool and IP cores:

• New IP Cores
 • AXI DataMover v3.00.a – Key AXI infrastructure IP which enables high throughput transfer of data between the AXI4 mapped domain to the AXI4-Stream domain
 • Chroma Resampler v1.0 (AXI4-Lite) – Converts between chroma subsampled YCbCr formats 4:4:4, 4:2:2, and 4:2:0. Also supports progressive and interlaced video.
 • JESD204 v1.1 – Designed to the Joint Electron Devices Engineering Council (JEDEC) JESD204B standard, which describes the serial data interface and link protocol between data converters and logic devices. Supports line rates of up to 6.25 Gbps on 1, 2, or 4 lanes.
 • SRIO Gen 2, v1.2 – Industry’s first Serial RapidIO Gen 2.1 IP soft core which supports x1, x2, and x4 lane widths for line rates up to 6.25 Gbps.

• Updates to Existing IP
 • Video Deinterlacer v1.0
 - First release through CORE Generator. Converts live incoming interlaced video streams into progressive video streams.
 • Aurora 8B/10B, v7.1 – Supports added for Virtex-7 and Kintex-7 devices (Simulation only). RX/TX simplex mode support has been removed.
 • Virtex-6 Embedded Tri-Mode Ethernet MAC Wrapper, v2.2 – Support for 2.0 Gbps and 2.5 Gbps overclocking support for 1000BASE-X
 • PCI v4 – Additional part and package support for Kintex-7
 • Chipscope Pro ILA, ICON, VIO, ATC2 – Support for Virtex-7 XT (485T), Virtex-7 SSI (200T), and Artix-7
 • IBERT – Support for Kintex-7 (v2.01.a) and Virtex-7 (v2.00.a) GTX
 • Audio, Video, and Image Processing IP
- In general, the AXI4 interface is supported by the latest version of an IP, for Virtex-7, Kintex-7, Virtex-6 and Spartan-6 device families. Older “Production” versions of IP continue to support the legacy interface for the respective core on Virtex-6, Spartan-6, Virtex-5, Virtex-4 and Spartan-3 device families only.

- For general information on Xilinx AXI4 support, see http://www.xilinx.com/ipcenter/axi4.htm
• Introducing video IP with AXI4 interface support. Virtex-7 and Kintex-7 support have also been added to the following Cores:
 - Color Correction Matrix v3.0
 - Color Filter Array Interpolation v4.0
 - Defective Pixel Correction v4.0
 - Gamma Correction v4.0
 - Image Characterization v2.0
 - Image Edge Enhancement v3.0
 - Image Noise Reduction v3.0
 - Image Statistics Engine v3.0
 - Motion Adaptive Noise Reduction v3.0
 - Object Segmentation v2.0
 - On-Screen Display v3.0
 - Video Scaler v5.0
 - RGB to YCrCb Color Space Converter v4.0
 - YCrCb to RGB Color Space Converter v4.0
• AXI Direct Memory Access v3.1 – Support for 512 and 1024 bit data widths
• AXI Interconnect v1.04.a – Optional packet-FIFO capability
• AXI Video Direct Memory Access v3.1 – Support for Flush on Frame Synch, dynamic clock rate change, dynamic line buffer thresholds and optional frame advancement on error
• Additional IP supporting AXI4 Interfaces
 - The latest versions of CORE Generator IP have been updated with Production AXI4 interface support. For more details AXI IP support information see http://www.xilinx.com/ipcenter/axi4_ip.htm
• A comprehensive listing of cores that have been updates in the 13.3 release can be viewed at http://www.xilinx.com/ipcenter/coregen/updates_13_3.htm
• New IP Documentation Format
 - Starting in the 13.3 release, Xilinx is moving toward a more consolidated approach to IP documentation by placing all information in one document. Historically, IP specification details have been published in data sheets, while information on generating and using the core resided in user guide documents. Going forward, starting with new release IP, both types of information will be provided in a single “Product Guide” document for the IP. Over time, documentation for new release versions of Xilinx IP cores will be migrated to this new format.

Important Release Information

Documentation

The latest documentation is located at www.xilinx.com and has known changes from the documentation on the DVD.
Known Issues

Known Issues for this release are found on the Xilinx website at the following locations:

- PlanAhead - http://www.xilinx.com/support/answers/39843.htm
- System Generator for DSP - http://www.xilinx.com/support/answers/29595.htm

Device Support

7 Series Devices in Public Access - Virtex-7 T and Kintex-7

- Speed files, Power, and Packages are in ADVANCED status. Refer to the Virtex-7/Kintex-7 FPGA Data Sheet: DC and Switching Characteristics for a detailed explanation on the different status.
- Beginning with ISE Design Suite 13.2, Xilinx requires users to select all IOSTANDARDS and pin placement in their design prior to generating a bitstream. Please see Xilinx Answer Record 41615 for more information.

Note: For additional Known Issues, please see Xilinx Answer Record 40905.

7 Series Devices in Limited Access – Virtex-7 XT and Artix-7

In this release, the following devices are Limited Access and are license controlled:

- Xilinx Virtex-7 XT
- Xilinx Artix-7

Limited Access devices are currently Beta-level quality and access requires a device-specific license. Contact your Sales Representative for more information about obtaining the required license.

Table 1-1 provides information on which Artix-7 tools features are not fully supported (noted limitations or license required).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported in Limited Access</th>
<th>Device-Specific License Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis - 3rd party</td>
<td>Yes (Refer to the section Synthesis-3rd Party)</td>
<td>No</td>
</tr>
<tr>
<td>Simulation - 3rd Party</td>
<td>Limited (Mentor Graphics ModelSim/QuestaSim only)</td>
<td>No</td>
</tr>
<tr>
<td>IP Support</td>
<td>Yes (Refer to the section IP Support)</td>
<td>No</td>
</tr>
<tr>
<td>All Devices Available</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Implementation Tools</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7 Series Transceiver Wizard</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Design Preservation and Team Design</td>
<td>Yes</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 1-2: Virtex-7XT Tools Features Not Fully Supported

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported in Limited Access</th>
<th>Device-Specific License Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Reconfiguration</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>ChipScope</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>SSO and SSN</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Bitstream Generation</td>
<td>No</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 1-2 provides information on which Virtex-7 XT tools features are not fully supported (noted limitations or license required).

Synthesis-3rd Party

- **Synplify® Pro** - Please contact your Synopsys Technical Support for a release of Synplify Pro that would be compatible with the Xilinx 13.3 release.
- **Precision® RTL** - See Xilinx Answer Record 42813 for more information. Please contact Mentor Graphics customer support for more information.

IP Support

For detailed information on IP support, refer to the IP Release Notes Guide.

Known Issues for Device Support

GTP SecureIP model

Details: This release does not have support for the GTPE2 SecureIP simulation model.
Chapter 1: What's New in ISE Design Suite

Resolution: This will be supported in the next release.

Incomplete Package support
Details: Not all devices have package files in this release.
Resolution: This will be supported in the next release.

7 Series FPGA Transceiver Wizard
Details: Currently the generation of the GTPE2 is not supported.
Resolution: Please contact Xilinx Technical Support for more information.

Note: For additional Known Issues, please see Xilinx Answer Record 40905.

Embedded Development Kit
- XC7K325T and XC7V485T device support is in the Initial Engineering Sample phase, and EDK support for these devices has not been validated in silicon. Likely future tools changes will require design to be revalidated.
- Base System Builder support is in Pre-Production status for the KC705 and VC707 boards as well as all 7 Series designs targeting custom boards. Several embedded IPs supported by the KC705 are not yet available, and timing closure and design functionality is not guaranteed.
- Support for RedHat Enterprise Linux Desktop 6, 32 and 64 bit.
- Full device support can be found at: http://www.xilinx.com/ise/embedded/ddsupport.htm

MicroBlaze
- A critical problem specific to MicroBlaze designs using data caches has been identified. A description of and a solution for the problem can be found at: http://www.xilinx.com/support/answers/44678.htm

Software Development Kit
- Digilent USB cables are supported by settling the JTAG Cable Type to “Auto Detect” in the Configure JTAG Settings dialog box.
- Kintex-7 FPGA KC705 evaluation boards with an older device revision may require workaround during debugging to compensate for memory controller calibration time after a reset occurs before accessing memory. See the SDK online help topic Known Issues and Caveats and Xilinx Answer Record 43967.

Embedded IP
- Limited 7-Series support for AXI-PCIe.

System Generator for DSP

New Constraints File Requirement for Generating a 7 Series Device Bitstream
If you are using the System Generator for DSP bitstream compilation target flow and also target a 7 Series device (Artix-7, Kintex-7, Virtex-7), you may run into a Bitgen error if you have not included a constraints file that specifies LOC and IOSTANDARD constraints for all pins. This change in behavior is documented in Xilinx Answer Record 41615. For workarounds specific to System Generator for DSP, refer to Xilinx Answer Record 42911.
ISE Design Suite 13.2

Highlights for this Release

Device Support

- Virtex®-7 and Kintex™-7
 - For Virtex-7 and Kintex-7, the device list has been updated with bitstream enablement
 - 7% better performance with 25% better performance for large Stacked Silicon Interconnect devices
- Virtex-7 XT and Artix™7
 - Limited Access
 These devices are visible but require a license to implement. Please refer the topic 7 Series Devices in Limited Access – Virtex-7 XT and Artix-7 for details.

Logic Edition

PlanAhead Enhancements

Please refer to What’s New in PlanAhead Design Tool for details.

ChipScope Enhancements

- Device configuration, programming, and debug for Kintex-7
- Serial I/O Toolkit
 - Kintex-7 GTX support for rev 1.0 silicon
 - Virtex-6 GTH support for production silicon
- Support for Digilent USB-JTAG cable plug-in
 - iMPACT, ChipScope™, SDK/XMD
- HardWare Co-Simulation for System Generator for DSP and ISim
- ChipScope AXI Monitor in XPS
 - Implements 39 Ready/Valid handshake protocol checks
 - Added support to monitor IP with AXI3 interface
Embedded Edition

XPS Enhancements

- Enhancements to Base System Builder (BSB)
 - All user input now captured on two pages
 - Pre-production support for the Kintex-based KC705 platform
 - Support for single or dual AXI4-based MicroBlaze™ Processor designs
 - New user design setting for selection of Area or Throughput
 - When possible BSB uses a 1:1 clocking ratio for AXI4 and AXI4-Lite interfaces
- New IP Catalog option to display only AXI4 IP
- Support for simulation of external DDRx memory
- Create/Import IP wizard now supports the creation of AXI4 master, AXI4-Lite master, and AXI4-Stream IP
- Platgen performance improved through optional parallel-synthesis support when run on multi-core host machines
- Questa Advanced Simulator support
- 7 Series PLL support in Clock Wizard
- New Master/Slave Information tab in AXI4 interconnect configuration dialog

SDK Enhancements

- SDK incorporates updates from the Eclipse 3.6.2 and CDT 7.0.2 releases, providing improved stability and enhancements in this open source platform.
- Linker Script Editor: When you double click a linker script or drag/drop the file into the Editor view, the Linker Script Editor now includes Summary and Source tabs.
 - Summary tab. You can define new memory regions and change the assignment of sections to memory regions; this is useful when a memory region is divided and shared between two processors, for example.
 - Source tab. Allows you to directly edit the linker script file contents. The Generate Linker Script dialog box remains available to generate and associate linker scripts.
- Digilent Cable Support: In the Configure JTAG Settings dialog, a JTAG Cable Type set to the value "Auto Detect" can be used to detect and configure support for Digilent USB cables connected to 7 Series development boards. Also, the JTAG Cable Type "3rd Party Cable, Xilinx® Plug-in" may also be used to set cable options manually for the Digilent cable.
- MicroBlaze processor v8.20a support
- User settings in Generate Linker Script dialog saved
- Application references to the Board Support Package (BSP) and hardware projects checked

MicroBlaze Software Processor

- MicroBlaze v8.20a support
 - New version v8.20.a
 - Support for the Artix-7 family and XQ5V devices
 - Configurable use of FPGA primitives
- Up to 512 bit data width for AXI cache interconnects

Embedded IP

- Production support for XCS6-1L
- Pre-production support for the Artix-7 family and XQ5V devices
- Embedded IP Highlights
 - New AXI PCIe – supporting 6-series only (7 Series support coming in Release 13.3)
 - New AXI_QuadSPI
 - New AHB_AXI_Bridge
 - Size optimizations for AXI4-Lite interconnect in Shared Address / Shared Data mode
 - Improvements to AXI4_V6_DDRx read/write arbitration algorithm to improve throughput
 - PLBv46_PCI now supports Spartan™-6

For a list of more Embedded IP changes, please see the section Embedded IP under Important Release Information.

DSP Edition

System Generator for DSP

- Hardware Co-Simulation
 - JTAG Co-Simulation support for KC-705 board
 - Digilent Plugin support for JTAG Hardware Co-simulation (Provides 30% speed up in configuration and Co-simulation at full speed over Xilinx Platform USB)
- AXI4 Support
 - CIC Compiler v3.0 - increased input width support to 24 bits
 - Divider Generator v4.0 - increased operand width support to 64 bits
- New Features in Blocks
 - First word fall-through option in FIFO

CORE Generator and IP

- CORE Generator™ IP with Artix-7 and Virtex-7 XT Support
 Limited Access support for the Artix-7 and Virtex-7 XT device families has been added to a selection of cores in this release. These cores provide Beta support for the Artix-7 and Virtex-7 XT device families. For a comprehensive listing of IP cores supporting these new device families, click the IP in this Release tab at http://www.xilinx.com/ipcenter/coregen/updates_13_2.htm.
- New IP Cores
 - AXI Infrastructure IP
 These new cores make it easy to create designs using AXI4, AXI4-Lite or AXI4-stream interfaces.
Chapter 1: What's New in ISE Design Suite

- **AXI Interconnect LogiCORE IP v1.03.a** connects one or more AXI4 memory-mapped master devices to one AXI4 slave device. The AXI interconnect supports address widths from 12 to 64 bits with interface data widths of 32, 64, 128, 256, 512, or 1024 bits. Users can now implement a DDR2 or DDR3 SDRAM multi-port memory controller using MIG and AXI Interconnect IP from CORE Generator.

- **AXI Bus Functional Model (BFM) v1.9** solution, created for Xilinx by Cadence® Design Systems, enables Xilinx customers to verify and simulate communication with AXI-based IP that is being developed. The AXI BFM IP in CORE Generator delivers test-benches examples and script examples that demonstrate the use of the BFM test writing APIs for AXI3, AXI4, AXI4-Lite, and AXI4-Stream masters and slaves.

- **AXI Direct Memory Access (DMA) LogiCORE IP v4.00.a** provides a flexible interface for transferring packet data between system memory (AXI4) and AXI4-Stream target IP. The AXI DMA provides optional support of Scatter/Gather for off-loading processor management of DMA transfers and descriptor queuing for pre-fetching transfer descriptors to enable uninterrupted transfer requests by the primary DMA controllers.

- **Audio, Video, and Image Processing IP**
 - Video Timing Controller v3.0 now supports AXI4-Lite interface and Virtex-7, Kintex-7 device family
 - Triple Rate SDI has introduced support for Spartan®-6

- **DSP Building Blocks**
 - Floating-Point Operator v6.0 now supports AXI4-Stream interface, two new operators reciprocal (1/x) and reciprocal square root (1/sqrt(x)), bit accurate C-model and VHDL test bench
 - CIC Compiler v3.0 now supports AXI4-Stream interface and VHDL test bench

- **Standard Bus Interfaces and I/O**
 - 32-bit and 64-bit Initiator/Target for PCI now supports Virtex-7 and Kintex-7

- **Additional IP supporting AXI4 Interfaces**
 - The latest versions of CORE Generator IP have been updated with Production AXI4 interface support. For more detailed AXI IP support information see www.xilinx.com/ipcenter/axi4_ip.htm.
 - In general, the AXI4 interface is supported by the latest version of an IP, for Virtex-7, Kintex-7, Virtex-6 and Spartan-6 device families. Older “Production” versions of IP continue to support the legacy interface for the respective core on Virtex-6, Spartan-6, Virtex-5, Virtex-4 and Spartan-3 device families only.
 - For general information on Xilinx AXI4 support, see www.xilinx.com/ipcenter/axi4.htm.
 - A comprehensive listing of cores that have been updated in the Release 13 can be viewed at www.xilinx.com/ipcenter/coregen/updates_13_2.htm.

- **PlanAhead IP Design Flow Enhancements**
 - Enhancement added to inform user about availability of updated versions of IP used in their design.
Important Release Information

Documentation

The latest documentation is located at www.xilinx.com and has known changes from the documentation on the DVD.

Known Issues

Known Issues for this release are found on the Xilinx website at the following locations:

- IP - IP Release Notes Guide
- PlanAhead - http://www.xilinx.com/support/answers/40512.htm
- EDK - http://www.xilinx.com/support/answers/39843.htm
- System Generator for DSP - http://www.xilinx.com/support/answers/29595.htm

Device Support

7 Series Devices in Public Access - Virtex-7 T and Kintex-7

- Bitstream generation has been enabled for this release
- Changes will be made to the Kintex-7 and Virtex-7 7 Series FPGA Transceiver Wizard in a future Xilinx tools release. This change will require that the 7 Series FPGA Transceiver Wizard be rerun to utilize the latest capabilities
- 7% better performance with 25% better performance for large Stacked Silicon Interconnect devices
- Speed files, Power, and Packages are in ADVANCED status. Refer to the Virtex-7/Kintex-7 FPGA Data Sheet: DC and Switching Characteristics for a detailed explanation on the different status.
- The following devices have been removed from the ISE Design Suite 13.2 design tools
 - Virtex-7 T
 - xc7v285t
 - xc7v450t
 - xc7v855t
 - Kintex-7
 - xc7k30t
- The following packages have been removed from the ISE Design Suite 13.2 design tools
 - Virtex-7 T
 - xc7v1500t (fhg1157 & ffg1761)
 - xc7v2000t (ffg1925)
 - Virtex-7 XT
 - xc7vx485t (ffg1929)
 - Kintex-7
 - xc7k70t (sbg324)
Chapter 1: What’s New in ISE Design Suite

- Beginning with ISE Design Suite 13.2, Xilinx requires users to select all IOSTANDARDS and pin placement in their design prior to generating a bitstream. Please see Xilinx Answer Record 41615 for more information.

Note: For additional Known Issues, please see Xilinx Answer Record 40905.

7 Series Devices in Limited Access – Virtex-7 XT and Artix-7

In this release, the following devices are Limited Access and are license controlled:

- Xilinx Virtex-7 XT
- Xilinx Artix-7

Limited Access devices are currently Beta-level quality and access requires a device-specific license. Contact your Sales Representative for more information about obtaining the required license.

Table 1-3 provides information on which Artix-7 tools features are not fully supported (noted limitations or license required).

Table 1-3: Artix-7 Tools Features Not Fully Supported

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported in Limited Access</th>
<th>Device-Specific License Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis - 3rd party</td>
<td>Yes (Refer to the section Synthesis-3rd Party)</td>
<td>No</td>
</tr>
<tr>
<td>IP Support</td>
<td>Yes (Refer to the section IP Support)</td>
<td>No</td>
</tr>
<tr>
<td>All Devices Available</td>
<td>Limited (A8/A15 support in Release 13.3)</td>
<td>Yes</td>
</tr>
<tr>
<td>Implementation Tools</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7 Series Transceiver Wizard</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Design Preservation and Team Design</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Partial Reconfiguration</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>ChipScope</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>SSO and SSN</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Bitstream Generation</td>
<td>No</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 1-4 provides information on which Virtex-7 XT tools features are not fully supported (noted limitations or license required).

Table 1-4: Virtex-7XT Tools Features Not Fully Supported

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported in Limited Access</th>
<th>Device-Specific License Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis - 3rd party</td>
<td>Yes (Refer to the section Synthesis-3rd Party)</td>
<td>No</td>
</tr>
<tr>
<td>Simulation - 3rd Party</td>
<td>Limited (Mentor Graphics ModelSim/QuestaSim only)</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 1-4: Virtex-7XT Tools Features Not Fully Supported

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported in Limited Access</th>
<th>Device-Specific License Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Support</td>
<td>Yes (Refer to the section IP Support)</td>
<td>No</td>
</tr>
<tr>
<td>All Devices Available</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Implementation Tools</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7 Series Transceiver Wizard</td>
<td>Yes (Refer to the section 7 Series FPGA Transceiver Wizard)</td>
<td>N/A</td>
</tr>
<tr>
<td>Design Preservation and Team Design</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Partial Reconfiguration</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>ChipScope</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>SSO and SSN</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Bitstream Generation</td>
<td>No</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Synthesis-3rd Party

- **Synplify® Pro**: Please contact your Synopsys Technical Support for more information on the version supporting limited access devices
- **Precision® RTL**: See Xilinx Answer Record 42813 for more information.

IP Support

For detailed information on IP support, refer to the IP Release Notes Guide.

Known Issues for Device Support

Artix-7

Details: Incomplete Package support for the XC7A30T devices in PlanAhead. PlanAhead does not support the following packages for 7A30T devices
- xc7a30t-csg324-1
- xc7a30t-csg324-2
- xc7a30t-csg324-3

Resolution: The workaround is to use do pin-planning via the UCF file, instead of PlanAhead tools for this device.

GTP SecureIP model

Details: This release does not have support for the GTP E2 SecureIP simulation model.

Resolution: This will be supported in the next release.

Incomplete Package support

Details: Not all devices have package files in this release.

Resolution: This will be supported in the next release.

7 Series FPGA Transceiver Wizard
Chapter 1: What’s New in ISE Design Suite

Details: Currently the generation of the GTHE2 is not supported.
Resolution: Please contact Xilinx Technical Support for more information.

Note: For additional Known Issues, please see Xilinx Answer Record 40905.

XPS

- Base System Builder support is in Pre-Production status for the KC705 board and all 7 Series designs targeting custom boards. Several embedded IPs supported by the KC705 are not yet available, and timing closure and design functionality is not guaranteed.

Embedded IP

- New Embedded IP Cores (v1.00.a)
 - AXI Interconnect Generator
 - AXI_PCIE
 - Cadence AXI BFM Wrappers – AXI3 and AXI4 Master/Slave Streaming
 - AXI_Master_Burst_IPIF
 - AXI_QuadSPI
 - AHB_AXI_Bridge
- Existing Embedded IP Updates – see individual IP change logs for individual enhancements and CRs fixed
 - AXI Interconnect – v1.03.a
 - AXI-4 Stream CIP Wizard Example
 - AXI V6 MIG DDRx – v1.03.a
 - AXI 7-series DDRx – v1.01.a
 - MPMC – v6.04.a
 - Proc_common – v3.00.a
 - PLBv46_pci – v1.04.a
 - PLBv46_PCIE – v4.07.a
 - AXI_BRAM_Cntrl – v1.03.a
 - AXI_Datamover – v2.01.a
 - AXI_SG – v2.02.a
 - AXI_DMA – v4.00.a
 - AXI_CDMA – v3.01.a
 - AXI_VDMA – v3.01.a
 - COREGen AXI VDMA – v3.01.a
 - AXI_Ethernet – v3.00.a
 - AXI_FIFO_MM_S – v2.01.a
 - ChipScope AXI Monitor – v3.00.a
 - AXI_Timer – v1.02.a
 - AXI_GPIO – v1.01.a
 - XPS_UARTLite – v1.02.a
- Improvements to AXI4_V6_DDRx read/write arbitration algorithm to improve throughput
- Size optimizations for AXI4-Lite interconnect in Shared Address / Shared Data mode

System Generator for DSP

New Constraints File Requirement for Generating a 7 Series Device Bitstream

If you are using the System Generator for DSP bitstream compilation target flow and also target a 7 Series device (Artix-7, Kintex-7, Virtex-7), you may run into a Bitgen error if you have not included a constraints file that specifies LOC and IOSTANDARD constraints for all pins. This change in behavior is documented in Xilinx Answer Record 41615. For workarounds specific to System Generator for DSP, refer to Xilinx Answer Record 42911.
ISE Design Suite 13.1

Highlights for this Release

ISE Design Suite

- Team Design
- Up to 100 times simulation acceleration via ISim Hardware Co-simulation
- AXI4 tool and IP support is now “Production” status
- Plug-and-Play IP Initiative
 - CORE Generator™ 2.0 introduction
 - IEEE P1735 Version 1 decryption interoperability
- Windows 7 Professional support

Device Support

Xilinx introduces the following device support for the 13.1 release:

- Kintex™-7
- Virtex®-7 (Including 7VX485T)

Logic Edition

The following describes what’s new in Logic Design Tools in ISE 13.1.

Project Navigator

- Embedded Development Kit (EDK) Integration Improvements
 - Support for multiple ELF files and automatic detection of ELF files referenced by EDK designs
 - Ability to control associations between ELF files and specific processors defined in XMP files
 - Ability to select an Evaluation Development Board in the New Project Wizard, New Project dialog box, or Design Properties dialog box
 - Ability to export hardware design before running implementation
 - Ability to automatically launch the Software Development Kit (SDK) when exporting a design
- Compare Projects feature includes additional categories and layout improvements
- SmartXplorer now features support for power-dedicated and custom strategies
- CORE Generator™ has the ability to update a core to the latest version as well as the ability to check all core versions
- Ability to create a new System Generator source in Project Navigator
- Ability to create a new System Generator source in Project Navigator
- Support for viewing TWR reports in Timing Analyzer
FPGA Editor

- New Lock Layers toolbar button, which locks the current layer visibility settings for all zoom levels.

iMPACT

- New SPI/BPI programming support:
 - Numonyx P30 bottom boot is supported, in addition to top boot.
 - Winbond W25Q is supported up to 128Mb.
 - Winbond W25Q support for the CV revision has been added.

ChipScope Pro

- ChipScope Pro HDL (VHDL and Verilog) Debug probe using PlanAhead and XST Synthesis flow
 - Enable users to mark debug nets on HDL or XCF constraint file
 - When MARK_DEBUG attribute is used:
 - Nets are preserved (not optimized away)
 - Nets appear in the ChipScope view in the PlanAhead view so users can assign to debug cores
- ChipScope Pro HDL Debug probe using PlanAhead and Synplify Synthesis flow
 - Enable users to mark debug nets on HDL (VHDL and Verilog) or SDC
 - When MARK_DEBUG attribute is used:
 - Nets are preserved (not optimized away)
 - Nets appear in the ChipScope view in the PlanAhead view so users can assign to debug cores
- BERT for Virtex®-6 GTX and GTH available in PlanAhead and ChipScope Flow
 - Also added low- and mid-range line rate support for IBERT V6 GTH

Startup Trigger Mode

- Using Project Navigator, Core Inserter, and Analyzer Tools
- Using PlanAhead tools and Analyzer Tools
- BERT sweep test plot GUI
 - Built-in graphical viewer of IBERT sweep test results for Virtex®-6 GTX/GTH FPGA transceivers
 - Standalone graphical viewer for offline analysis of IBERT sweep test results for Virtex®-6 FPGA GTX/GTH, Spartan®-6 FPGA GTP, and Virtex®-5 FPGA GTX transceivers

Tutorials:

- PlanAhead Tutorial: Debugging with ChipScope Analysis
- ChipScope IBERT: Basic IBERT design flow

ISE Simulator

- Supports simulation of AXI BFM
- Relaunch of simulation from the ISIM GUI
Embedded Edition

The following describes what’s new in Embedded Tools and IP in ISE Design Suite 13.1.

EDK Overall Enhancements

- Consistent SDK workspace selection behavior across Project Navigator, Xilinx Platform Studio (XPS), and SDK.
- TDP device-based licensing support.

XPS Enhancements

- Changes to Base System Builder
 - AXI systems are now the default in Base System Builder for Spartan®-6, Virtex®-6, and 7 Series designs. Base System Builder only supports AXI systems for 7 Series designs.
 - New shared bus interconnect used for low frequency peripheral bus, reduces design size.
- Changes to System Assembly View (SAV)
 - New DRC feature allows you to run design rule checks at any time.
 - When AXI IP is added in SAV, the following functions are automatically completed: bus, clock, and reset connections, and address generation.
 - When adding an AXI MicroBlaze processor instance, the following functions are automatically completed: interconnect, DRAM memory and cache connections, debug connections, clocks, and LMB BRAM.
 - You can now modify the order of IP listed in the SAV.
 - For multi-processor systems, you can filter on processor system instance in the SAV.
- Other XPS Changes
 - All software development tools have been removed from XPS.
 - Software projects have been removed from XPS.
 - The main toolbar has been streamlined and now contains fewer buttons.
 - Create and Import IP (CIP) wizard now supports creation of AXI4 and AXI4-Lite slave peripherals.
 - AXI BFMs project generation now included in CIP wizard. Note: A license for AXI BFMs must be purchased separately.
 - ELF files can now be assigned for implementation or simulation and remain synchronized with Project Navigator.
 - Debug Wizard supports inclusion of AXI monitors and hardware/software co-debug of AXI-based designs.
 - When the XPS design is a submodule in a Project Navigator project, simulation is only available in Project Navigator.
 - When you export your design to SDK, the SDK workspace is no longer set automatically.
SDK Enhancements

- Updated to Eclipse 3.6 and CDT 7.0 Helios release.
 - Updated functionality and improved stability while retaining the familiar user interface
 - Capture console log to files.
- Cygwin no longer required or shipped
 - GNU Tool Chain for MicroBlaze and PowerPC built natively without Cygwin
 - GnuWin32 utilities provided for common UNIX/Linux functions
- Usability Updates
 - ELF-only debugging
 - Launch management
 - Flow checking, including BSP deletions and hardware change detection.
 - User assistance, including hints, context sensitive help and preference settings.
 - Software repository information saved to minimize setup when using revision control.
 - Automation for Flash read-only region behaviors.
- 7 Series initial support in XMD
- TDP device-based licensing support

Project Navigator/EDK Integration Enhancements

- Recognition of multiple processor instances in .xmp.
 - Previous versions assumed a single processor
 - Ability to control associations between ELF files and specific processors defined in XMP files.
- Separate .elf sources for implementation and simulation.
 - elf files now assigned per processor instance.
 - Automatic detection of ELF files referenced by EDK designs.
- New “Export Hardware Design to SDK without Bitstream” process allows you the ability to export hardware design before running implementation.
- Ability to automatically launch the Software Development Kit (SDK) after design export (optional).
 - SDK workspace handling consistent with XPS and standalone SDK.
- Ability to select an Evaluation Development Board in Project Navigator’s New Project Wizard, New Project dialog box, or Design Properties dialog box.

MicroBlaze Soft Processor

- New version V8.10.a
- Support for 7 Series Kintex and Virtex devices
- AXI now the default interface for 7 Series designs
- MicroBlaze Configuration wizard support Fault Tolerant features
- Added Error Correction Code (ECC) to LMB BRAM memory connected to MicroBlaze
- Added parity protection on MicroBlaze cache and MMU memory
Chapter 1: What's New in ISE Design Suite

- New instructions added
 - Count Leading Zeros (CLZ)
 - Memory Barrier (MBAR)
- Stack overflow and underflow detection
- New parameter allows AXI4-Stream / FSL instructions in user mode

Embedded IP
- New Embedded IP
 - AXI 7-Series DDRx
 - AXI External Peripheral Controller
 - AXI to AHBLite Bridge
 - AXI Master Lite IP Interface (IPIF)
- Embedded IP now available in CORE Generator
 - CORE Generator AXI VDMA

DSP Edition

The following describes what’s new in System Generator for DSP and DSP IP in ISE 13.1.

System Generator for DSP
- Support for MATLAB/Simulink 2011a.
- All System Generator blocks now support Kintex-7 and Virtex-7 devices.
- New blocks
 - 7 Series DSP48E1, Complex Multiply 5.0, DSP48 Macro 2.1, FIR Compiler 6.2, VDMA Interface 3.0.
- System Generator support for AXI PCore and HW Co-simulation.
- New context menus speed adding and connecting blocks (Beta). For details on this feature, see Chapter 5 of the System Generator for DSP Reference Guide.
- Choice to have tools automatic create a Hardware Interface Document. For more details on this feature, see the System Generator token topic in the System Generator for DSP Reference Guide.
- System Generator IP
 - Floating-point Operator, CORDIC, Divider Generator, CIC Compiler, DSP48 Macro, Multiply-Add, and Multiply-Accumulate.

CORE Generator and IP

The following describes what’s new in the CORE Generator™ tool and IP cores:

Introducing CORE Generator IP with Virtex®-7 and Kintex™-7 support

New IP Cores
- Audio, Video and Image Processing IP
 - Object Segmentation v1.0 (AXI4-Lite)
 - Used in conjunction with the Image Characterization LogiCORE IP to convert statistical data provided into a list of objects that meet a user-defined set of object characteristics.
- **AXI Video Direct Memory Access v1.0** (AXI4, AXI4-Stream, AXI4-Lite)
 - Provides a flexible interface for controlling and synchronizing video frame stores from external memory. Multiple VDMAs from different clock domains can be linked together to control frame store reads and writes from multiple sources.

- **Communication DSP Building Blocks**
 - **Linear Algebra Toolkit v1.0** (AXI4-Stream)
 - This IP provides flexible and optimized building blocks for developing complex composite functions for various signal and data processing applications.

- **FPGA Features and Support**
 - **7 Series FPGA Transceivers Wizard v1.3**
 - Configures one or more Virtex-7 and Kintex-7 FPGA GTX transceivers either from scratch, or using industry standard templates, using a custom Verilog or VHDL wrapper.
 - Also provides an example design, testbench, and scripts to allow you to observe the transceivers operating in simulation and in hardware.

- **Standard Bus Interfaces and I/O**
 - **7-Series Integrated Block for PCI Express (PCIe) v1.0** (AXI4-Stream)
 - Implements 1-lane, 2-lane, 4-lane, or 8-lane configurations. The IP uses the 7 Series Integrated Hard IP Block for PCI Express in conjunction with flexible architectural features to implement a PCI Express Base Specification v2.1 compliant PCI Express Endpoint or Root Port.
 - Unique features of the LogiCORE IP for PCI Express are the high performance AXI Interface, optimal buffering for high bandwidth applications, and BAR checking and filtering.

- **Wireless IP**
 - **Triple Rate SDI v1.0** (AXI4-Stream)
 - Provides receiver and transmitter interfaces for the SMPTE SD-SDI, HD-SDI, and 3G-SDI standards.
 - The Triple-Rate SDI receiver and transmitter are provided as unencrypted source code in both Verilog and VHDL, allowing you to fully customize these interfaces as required by your specific applications.

 - **3GPP LTE PUCCH Receiver v1.0** (AXI4-Stream)
 - Provides designers with an LTE Physical Uplink Control Channel Receiver block for the 3GPP TS 36.211 v9.0.0 Physical Channels and Modulation (Release 9) specification.
 - Support for channel estimation, demodulation and decoding.
Chapter 1: What's New in ISE Design Suite

Additional IP supporting AXI4 Interfaces

- The latest versions of CORE Generator IP have been updated with Production AXI4 interface support. For more detailed support information see www.xilinx.com/ipcenter/axi4_ip.htm.
- In general, the AXI4 interface will be supported by the latest version of an IP, for Virtex®-7, Kintex™-7, Virtex®-6 and Spartan®-6 device families. Older "Production" versions of IP will continue to support the legacy interface for the respective core on Virtex®-6, Spartan®-6, Virtex®-5, Virtex®-4 and Spartan®-3 device families only.
- For general information on Xilinx AXI4 support see www.xilinx.com/ipcenter/axi4.htm.
- A comprehensive listing of cores that have been updated in this release can be viewed at www.xilinx.com/ipcenter/coregen/updates_13_1.htm.

CORE Generator Enhancements

- Introducing support for IP-XACT based IP repositories for Xilinx and Alliance Program Member IP. (Requires no changes to existing CORE Generator, PlanAhead and Project Navigator user flows.)
- Addition of “Manage IP” pull-down menu to provide repository and IP management features.
- Display of AXI4 support by each IP in the IP catalog has been expanded to display the various AXI4 interfaces in separate sortable columns: AXI4, AXI4-Stream and AXI4-Lite
- Individual ports in IP symbols can now be grouped into AXI4 channels for simplified symbol views.

PlanAhead IP Design Flow Enhancements

- Introducing support for IP-XACT based IP repositories for Xilinx and Alliance Program Member IP (Requires no changes to the existing PlanAhead tool IP flow).
- Display of AXI4 support by each IP in the IP catalog has been expanded to display the various AXI4 interfaces in separate sortable columns: AXI4, AXI4-Stream, and AXI4-Lite.
- Support added for Automatic IP Upgrade flow.

Important Release Information

General

- Pinouts on Kintex-7 and Virtex-7 devices are subject to change because package files are not yet finalized for these families. Pinout changes may require design re-implementation in a future Xilinx design tools release.
- Default IO standards for Kintex-7 and Virtex-7 devices will change in a future Xilinx design tools release.
- Changes will be made to XC7V1500T and XC7V2000T device models in a future Xilinx design tools release. 13.1 implementation design files (.NCD) targeting these devices will be invalidated at that time, and designs will need to be re-implemented.
- Changes will be made to the Kintex-7 and Virtex-7 GTX component models in a future Xilinx design tools release. This change will require that the 7 Series FPGA Transceivers Wizard be rerun for each instance.
• IBIS and HSPICE models are not yet available for Kintex-7 and Virtex-7 devices.

Known Issues

Known Issues for this release are found on the Xilinx website at the following locations:

• IP - IP Release Notes Guide.
• ISE - http://www.xilinx.com/support/answers/39243.htm
• PlanAhead - http://www.xilinx.com/support/answers/40512.htm
• EDK - http://www.xilinx.com/support/answers/39843.htm
• System Generator for DSP- http://www.xilinx.com/support/answers/29595.htm

ISE Simulator

• Recompile and Relaunch simulation
 • You can now edit files, re-compile, and re-launch a simulation within the ISE Simulation GUI
• Full Access to Hardware Co-Simulation
 • The limited customer access restrictions have been removed.
 • An additional license is no longer required.
• Design Environment Integration
 • You can now launch ISim from PlanAhead and Project Navigator.
• ISim User Guide Improvements
 • There is a new section on Hardware Co-Simulation.
 • The Tcl Commands chapter has been re-organized.

XPS

• All software development tools have been removed from XPS.
• AXI based MicroBlaze designs are always built using instruction and data caches.
• The main toolbar has been streamlined and now contains fewer buttons.
• Create and Import IP (CIP) wizard now supports creation of AXI4 and AXI4-Lite slave peripherals.
• AXI BFM's project generation now included in CIP wizard.
• ELF files can now be assigned for implementation or simulation and remain synchronized with Project Navigator.
• Debug Wizard supports inclusion of AXI monitors and hardware/software co-debug of AXI-based designs.
• When the XPS design is a submodule in a Project Navigator project, simulation is only available in Project Navigator.
• When you export your design to SDK, the SDK workspace is no longer set automatically set.
Chapter 1: What’s New in ISE Design Suite

SDK

- Cygwin no longer required:
 - Custom makefiles use Windows style paths
 - xbash removed
- MicroBlaze v8.10a support
- XMDStub support removed

Project Navigator/EDK Integration

- Project Navigator will no longer support xmp as the top-level source.
- New messaging to add top-level HDL results in consistent constraint handling.

Embedded IP

- Several Existing core updates
 - See individual change logs and datasheets for specifics.
- AXI Enhancements
 - AXI BRAM Controller – Microblaze ECC Block RAM support.
 - AXI Interconnect – Shared Bus Mode.
 - Partitioned Clock Domains – AXI VDMA, AXI CDMA, AXI DMA.
 - AXI Ethernet – Full checksum offload.

System Generator for DSP

VHDL Library Support for Black Box Import

This new Black Box feature allows you to import VHDL modules that have predefined library dependencies. For example, similar but independent sub-modules can now be compiled into different libraries other than “work”. A detailed example of how to use this new feature can be found in the online Help topic titled “Black Box VHDL Library Support”.

Performance Improvements

- Support for fast simulation model for AXI FFT that provides a 42x speed up.
- 33% improvement in 1st-time initialization of a model.
- 2-3x improvement in simulation speed.

MATLAB Support

- MATLAB 2010a and 2010b are fully supported.
- Beta support is provided for MATLAB 2011a.
- MATLAB must be installed in a directory with no spaces (e.g., C:\MATLAB\R2010b).
- The Fixed-Point Toolbox is required if a Gateway Out block has an output greater than 53 bits. Signals internal to the Xilinx Gateway In and Gateway Out blocks can be larger than 53 bits without needing the Fixed-Point Toolbox.
- For Linux, MATLAB 2010a requires the Red Hat Enterprise Desktop 5.2, 32-bit/64-bit Operating System. It does not work with Red Hat Enterprise Linux WS v4.7.
New Blocks

Complex Multiply 5.0
This block is based on the Xilinx® LogiCORE™ IP Complex Multiplier that implements AXI4-Stream compliant, high performance, optimized complex multipliers based on user-specified options.

DSP48 Macro 2.1
The Xilinx LogiCORE™ DSP48 Macro provides an easy-to-use interface that abstracts the XtremeDSP™ slice and simplifies its dynamic operation by enabling the specification of multiple operations via a set of user-defined arithmetic expressions. New in this version of the core is the ability to control resets and clock enables of the registers within the XtremeDSP Slice.

DSP48E1
The Xilinx DSP48E1 block is an efficient building block for DSP applications that use Xilinx Virtex®-6 devices. The DSP48E1 block provides access to the pre-added and control of the registers within the silicon.

FIR Compiler 6.2
This block is based on the Xilinx® LogiCORE™ IP FIR Compiler v6.2 that implements AXI4-Stream compliant, high performance, optimized complex multipliers based on user-specified options.

VDMA Interface 3.0 (Beta)
This block is based on the AXI Video Direct Memory Access (AXI VDMA) core which is a soft Xilinx IP core providing high-bandwidth direct memory access between external DDR memory and the AXI4-Stream interface. Initialization, status, and management registers are accessed through an AXI4-Lite slave interface which can be configured using an MCode block. A MATLAB utility function is provided to generate the necessary logic to easily connect your System Generator design to external DDR memory.

Previous Versions of System Generator for DSP Release Notes
Previous versions of System Generator for DSP release notes are located in Chapter 3 of the System Generator for DSP Getting Started Guide (v 12.4). This getting started guide is located online at the following URL:

Chapter 2

What’s New in PlanAhead Design Tool

PlanAhead Design Tool 13.4

New Features

- Post-implementation IBIS file support provided via PlanAhead™ Pin-Planner and write_ibis Tcl command
- SSN Predictor support provided via PlanAhead Pin-Planner and report_ssn Tcl command for the following devices and packages:
 - Kintex-7
 - XC7K325T - FFG676, FFG900
 - XC7K410T - FFG676, FFG900
 - XC7K480T - FFG901, FFG1156
 - Virtex-7 XT
 - XC7VX485T - FFG1157, FFG1761, FFG1927, FFG1930
- SSO Limit Tables - The following device-package combinations are supported:
 - Artix-7
 - XC7A100T - FTG256, CSG324, FGG484, FGG676
 - XC7A200T - FBB484, FBB676, FFG1156
 - XC7A350T - FBB484, FBB676, FFG1156
 - Virtex-7 XT
 - XC7VX330T - FFG1157, FFG1761
 - XC7VX415T - FFG1157, FFG1158, FFG1927
 - XC7VX550T - FFG1158, FFG1927
 - XC7VX690T - FFG1157, FFG1158, FFG1761, FFG1926, FFG1927, FFG1930
 - XC7VX980T - FFG1926, FFG1928, FFG1930

PlanAhead Design Tool 13.3

The PlanAhead 13.3 design and analysis tool adds the ability to display RTL sources hierarchically according to how they are installed in the HDL. This feature gives the user the ability to visualize which source files contain the top-level logical hierarchy and is useful for large numbers of sources and for projects that integrate lots of logic from other developers or from IP.

See the related chapters in the PlanAhead User Guide (UG632), for more information.
Chapter 2: What’s New in PlanAhead Design Tool

New Features

This section provides an overview of new PlanAhead tool features in the 13.3 release.

- Enhanced ability to search and replace text across all files in the project
- Ability to cross-probe and select objects across multiple open designs
- A project-wide default language setting for RTL development
- Faster opening of netlist designs by caching of edif netlists from .ngc files
- Enhanced localization support for Japanese and Chinese language character sets
- Command completion toolbar buttons bound to Tcl procedures
- Ability to reset Tcl properties and parameters to default values

PlanAhead Design Tool 13.2

GUI and Project Improvements

Clock Domain Interaction Report

The PlanAhead tool 13.2 has added the capability to analyze timing paths that cross between clock domains defined in UCF as PERIOD constraints. The Clock Domain Interaction report is based on the static timing analysis estimation engine that is available in PlanAhead, and is not provided by the signoff TRACE timing tool. The PlanAhead timing analysis engine builds a matrix of all possible combinations that can exist between clock constraints and detects if there are paths between them. There is a graphical report with a color coded table that indicates whether paths were found, and whether they were properly constrained, partially constrained, or unconstrained. There is also an ASCII version of the report. The report can be generated by selecting Tools > Timing > Report Clock Interaction or by invoking the report_clock_interaction Tcl command.

Invoke TRACE After Implementation

The PlanAhead tool has added the ability to call TRACE without re-running the entire implementation flow. In prior releases, if you wanted to re-run TRACE to generate a TWR or TWX timing report file with different options than those set in the run strategy, you would have to either re-run the entire implementation run or manually go to the run directory and invoke TRACE with the new options you wish to use. The PlanAhead tool has added a shortcut in the Graphical User Interface (GUI) to run TRACE with different options on a post-implementation design.

Global Include Files

Verilog support for RTL development in the PlanAhead tool now includes support for global include files similar to that of Project Navigator.

Tool Tip Localization

The GUI tool tips now include Chinese and Japanese language versions of all the text in the tool tips. These can be enabled in Tools > Options > General under the Language & Tooltips section.
Schematic View Default for Opened RTL Design

When the RTL design is opened, the default layout view now opens to the schematic view.

New Clock Planning View Layout

There is a new Clock Planning view layout to facilitate the planning and placement of clock resources in the design. The Clock Planning view layout is available from the Layout menu or from the pulldown Layout Selector in the toolbar menu.

Save Workspace View with Custom Layout Save

In customized GUI layouts, the PlanAhead tool also saves changes to the Workspace view layout, such as the Device view and Project Summary, along with other user-defined layout changes.

Hierarchical Design Methodology Support

The PlanAhead tool has added the ability to configure partition settings in both the synthesis and implementation run settings dialogs. This allows the ability to control partition behavior directly in the run settings section of the tool. Once a partition has been selected in the RTL or Netlist views, there is a new option in the Flow Navigator to control the partition settings for both synthesis and implementation.

Pin Planning Features

Initial 7 Series SSN Report

Support for Simultaneous Switching Noise (SSN) signal integrity checks and recommendations have been added for certain 7 series devices. This report will likely be enhanced based on further characterization in the future. Unsupported devices are indicated when running the report, using either the Tools > Run Noise Analysis command or the equivalent Tcl command.

7 Series HP/HR Bank Support

The PlanAhead tool supports HP and HR Bank visualization for 7 series devices in the Device and Package views.

Automatically Sort Package Pins View

After setting the Device Configuration Mode, the PlanAhead tool offers the option to automatically sort the Package Pins view by the Config column so newly configured pins are listed first.

Export IBIS Model Command Removed

IBIS model generation is not supported in the PlanAhead tool. PlanAhead 13.1 provided a Tcl command and a menu command to export an IBIS model configured for your device, which issued a warning message stating that this capability was not supported. This menu option and Tcl command have been removed until the feature is fully supported. The standalone IBISWriter tool supports IBIS model generation for Spartan®-6, Virtex®-6 and 7 series devices. Refer to the Command Line Tools Users Guide (UG628) for more information on using the IBISWriter.
Chapter 2: What’s New in PlanAhead Design Tool

Improved Tcl Online Help and Documentation

Additional details have been added to Tcl command reference documentation, available in the PlanAhead Software Tcl Command Reference Guide (UG789) (http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/ug789_tcl_commands.pdf), and the online help text available through the Tcl help command.

PlanAhead Design Tool 13.1

This section provides an overview of the PlanAhead tool 13.1 release. See the related chapters in the PlanAhead User Guide (UG632), for more information.

ISE Simulator Integration

The PlanAhead tool has integrated the Xilinx ISE Simulator (ISim) into the design flow. This new integration enables development and verification of designs completely within the PlanAhead user interface. PlanAhead now has support for simulation-only sources added to the project, which is performed either in the new project wizard or in the add sources dialog. The Flow Navigator provides access to ISE Simulator.

You can invoke ISim:

- After RTL Design for behavioral simulation
- After Implementation for timing simulation

Hierarchical Design Methodology Support

The PlanAhead tool supports the Hierarchical Design features as described in the following subsections.

- Incremental XST flow in RTL projects
- Importing a partition into a different hierarchy than the one in which the partition was created
- AREA_GROUPS within partitions
- Black box support in Synthesis and Implementation
- Boundary optimization for constants and unconnected inputs and outputs on partition ports
- Defining partitions for Design Preservation in Netlist-based projects

Team-Based Design Support

PlanAhead 13 adds support for new team-based design methodology. Team-based design supports multiple engineers implementing at a module level within a design to work in parallel. The flow then supports assembling the module-level runs by a team leader at the top level with support for preservation levels to control the placement and routing information that is kept during import.

See the Hierarchical Design Methodology Guide (UG748) and Chapter 13, Hierarchical Design Techniques, in the PlanAhead User Guide (UG632) for more information.
Design Preservation RTL Support

PlanAhead 13 enhances support for design preservation flows by adding incremental compilation for RTL synthesis of partitions with XST. The design preservation flow allows a designer to mark portions of a design to be preserved in subsequent iterations and enabled incremental compilation. In prior releases, design preservation was only supported post synthesis. RTL-level control was added to provide designers an easier to use flow to control partitions throughout the design flow from synthesis through implementation within the PlanAhead user interface.

See the Hierarchical Design Methodology Guide (UG748) and Chapter 13, Hierarchical Design Techniques, in the PlanAhead User Guide (UG632) for more information.

Partial Reconfiguration Support

PlanAhead provides an interface to Partial Reconfiguration with appropriate licensing.

See the Partial Reconfiguration User Guide (UG702) for more information.

Project Navigator Project File (.xise) Support

The New Project wizard lets you specify an ISE project file without requiring the specification of all project sources. The PlanAhead tool:

- Parses the XISE project file
- Adds RTL and simulation sources, including CORE Generator™ cores and Block Memory Model (BMM) file

PlanAhead can now also determine relevant run options for Synthesis and Implementation tools and can configure the default run to match based on settings in the XISE project file.

New and Modified Project Management Features

The following subsections describe the new and modified features in PlanAhead projects. In PlanAhead 13, you can:

- Import sources from Project Navigator
- Order source files automatically or manually for proper compilation by XST
- Discover the top-module name automatically
- Support ‘include statements inside HDL more robustly
- Support Xilinx Synthesis Technology (XST) XCF constraint files
- Identify unused source files
- Launch Runs without copying sources to the Run directory
- Archive projects
- Customize the Text Editor font
Chapter 2: What’s New in PlanAhead Design Tool

Graphical User Interface Enhancements

The PlanAhead tool for release 13 has further enhanced the “layered complexity” of the Graphical User Interface (GUI) to provide an intuitive environment for both new and advanced users.

The left-side panel of the interface is a “Flow Navigator,” which exposes a push-button flow from Project Management, through RTL Design, Netlist Design, Implemented Design, to Device Programming and Debugging. The new integration with ISim provides timing and behavioral simulation, which are exposed where appropriate for use in the Flow Navigator menu options. A new information window and an enhanced Tcl Console and Messaging window are also available.

The following subsections describe the new features and enhancements in the PlanAhead tool release in the ISE® Design Suite.

Main Menu Enhancements

Workspace Views

The PlanAhead workspace views are redesigned with an auto-fit selection. A dropdown in the main toolbar lets you select applicable views for the open Project. The workspace views now contain dock/undock, float, minimize/maximize, and restore buttons.

Search Option

PlanAhead has added a search text box on the main menu to search through all the menu options for the specified text.

Export Options

A new option in the PlanAhead File > Export > Export IBIS Model is available for an open design. The Input/Output Buffer Information Specification (IBIS) is used analyze the design. The IBIS model exported from PlanAhead is compliant with the IBIS version 4.2, and uses the defaults of that specification.

Single Click Implementation

PlanAhead now allows you to click on the Implementation button in the Flow Navigator, and the tool will launch a dialog box prompting you to launch synthesis first if you have an RTL project and the synthesis run is out of date. This “single-click” implementation of RTL requires that you have PlanAhead in GUI mode. If you launch synthesis first and then close the project, only the currently running Synthesis run completes and the Implementation run does not launch.

Source View Enhancements

The PlanAhead release 13 provides enhanced views for source file structures and editing.

Third-Party Text Editor Support

PlanAhead now allows the ability to use third-party editors for editing source code files.
Message Manager

A new Messages view consolidates error, critical warning, warning, and informational messages from PlanAhead and ISE tools into a single view. Messages are linked to the source code to allow for quick exploration and resolution of any errors or warnings.

Netlist View Additions and Modifications

The following subsections describe the additions and modifications to the PlanAhead Netlist view.

Clocking Resource View

The new Clocking Resource view enables you to visualize and assign clocking-related sites and physical resources within the FPGA.

Folders for Component Switching Limits

There are new folders in the Timing Results view imported from TRACE that better organize the component pin switching limit violations with setup and hold violations. The violations are sorted and the worst violation is displayed first within a constraint.

Enhanced Slack Histogram Report

PlanAhead release 13 contains an improved slack histogram feature which creates a graphical bar chart corresponding to collections of paths within ranges from most negative to most positive.

Device View Enhancements

PlanAhead Release 13 contains the following enhancements.

Device Resource Details

The Device view in PlanAhead has been enhanced to provide more detail for device resources, such as pins on slices and BEL-level pins for Virtex®-6 and Virtex-7 devices, and the Timing Path provides annotation on pins upon full placement.

Multiple Instance Drag and Drop

PlanAhead now allows moving multiple instances in the device view at the same time. This allows users to move instances that are already placed in a group, and all location constraints are translated together.

Schematic View Enhancements

PlanAhead supports tracing logic between two selected objects in the Schematic view. Any two objects can be selected, and the PlanAhead tool will trace and draw any intermediate logic connections between them within a schematic.

XPA Integration

PlanAhead has added the ability to launch Xilinx Power Analyzer (XPA) to analyze power on implemented designs. To launch XPA, open an implemented design, and click the XPower Analyzer icon.
Chapter 2: What's New in PlanAhead Design Tool

RTL Design Additions and Modifications

Text Editor Options

IP Catalog

The PlanAhead release 13 enhancements in the IP Catalog are:

- The CORE Generator™ tool IP catalog now supports migration of older superseded cores to the currently supported version.
- PlanAhead now supports canceling IP generation tasks that block other operations in the GUI.

Source File Exploration

PlanAhead can determine the top module in an RTL design automatically, or give you the ability to define it manually.

You can reorder source files, either automatically or manually, for compilation and synthesis, and automatically or manually enable or disable RTL source files as required by the top-level module.

Power Estimation Enhancements

PlanAhead release 13 has Power Estimation available on Virtex-5, Virtex-6, and Spartan®-6 device families.

Partitions Control

PlanAhead release 13 provides control of partitions at the RTL level in synthesis with XST.

Additional ChipScope Features

The PlanAhead tool 13.1 added the ability within the ChipScope™ Pro Debug Analyzer to tag RTL nets using a new HDL Debug Probe feature that supports the following HDL debug flows:

- PlanAhead and Xilinx Synthesis Technology (XST).
- PlanAhead and Synplify and Synplify Pro from Synopsys, Inc.
- PlanAhead and Precision RTL Synthesis from Mentor Graphics, Inc.

Pin Planning Changes

The following subsections describe the PlanAhead 13 changes to the pin planning features.
Package View Legend and Spreadsheet Manipulation

A new legend to the Device and Package view allows you to view or hide specific layers and objects, and provides a legend for layer colors and pin shapes.

The spreadsheet-like Package Pins view can be edited, sorted, flattened, and filtered for better visibility on multifunction pins.

Alternate Part Definition

PlanAhead release 13 has the ability to define alternative parts to a design (for Virtex-5, Virtex-6, and Spartan-6 devices only). Some restrictions apply to Spartan-6 LX25 and LX25T devices, which is detailed in:

http://www.xilinx.com/support/answers/34885.htm

New Pin Assignment and Banking Rules

The new pin assignment and banking rules are documented in Appendix B, DRCs, of the PlanAhead User Guide (UG632), and include VCCaux reporting for Virtex-6 and newer devices.

Write I/O STANDARDs to Exported UCF

PlanAhead now has the option to write out all I/O STANDARD constraints to an exported UCF file with the File > Export > Export I/O Ports command.

New and Modified Design Rule Checks

The following is a list of the new and modified Design Rule Check (DRCs) in PlanAhead release 13.

Attribute DRCs

- AVAL—Checks for invalid attribute values on Netlist instances.
- ADEF—Checks for undefined attribute values on Netlist instances.

Bank DCI Cascade DRC

- DCICIOSTD—Checks that the DCI Cascade constraint is legal.

Bank I/O Standard DRC

- VCCAUX2— Warns of any requirements on LVPECL_33 and TMDS_33.

ChipScope DRCs

- CSUC—Checks for unconnected channels on ILA cores.
- CSCL—Checks for non-clock nets that are clocking the capture of probed nets.
- CSBR—Checks if device block RAM resources exceeded.
Chapter 2: What’s New in PlanAhead Design Tool

DSP48 DRCs

- DPCA—Checks the DSP48 cascade to ensure it is feasible based on Netlist connectivity.
- DPREG—Checks for DSP48 asynchronous feedback.

FIFO DRC

- FSYN—Checks for synchronous FIFO.

IOB DRC

- IOPCSLR—Checks for part compatibility between monolithic and SLR/SLL devices.

Placer DRCs

- PLCR—Checks that the number of global clocks in a region is less than the value allowed by the device.
- PLCK—Checks all clock placement rules run during the placer.
- PLDL—Placement constraint for I/Os that checks whether all I/O are locked and whether all members of a bus are locked.
- PLVP—Checks for non-place-able instances due to resource conflicts or limitations.

RAMB DRC

- RAMB—Checks for clock restrictions for READ_FIRST mode.

Required Pin DRC

- REQP—Checks for required pins that are not connected on instances in the netlist.

Implementation Enhancements

PlanAhead 13 contains the following Implementation enhancements:

- Ease of file ordering for Implementation Runs.
- Ability to store Run-specific constraints in a specified UCF file.

Once you implement a design, PlanAhead automatically loads/stores the constraints from that Run in a run-specific UCF.
Chapter 3

Architecture Support and Requirements

This chapter describes the operating systems and architectures that the ISE® Design Suite 13 design tools support. It also describes system requirements for ISE Design Suite 13. This chapter comprises the following sections:

- Operating Systems
- Architectures
- Compatible Third-Party Tools
- System Requirements

Operating Systems

ISE Design Suite 13 supports three operating systems: Microsoft Windows®, Red Hat® Enterprise Linux, and SUSE Linux Enterprise.

Note: Xilinx only supports x86 processor architecture.

Microsoft Windows

The following table lists Microsoft Windows support.

Table 3-1: Microsoft Windows Support (English and Japanese)

<table>
<thead>
<tr>
<th>Product</th>
<th>XP Professional (32 & 64 bit)</th>
<th>7 Professional (32 & 64 bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Entry and Implementation Tools (ISE Design Suite Logic Edition 13)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ISE Simulator (ISim) Tool</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ISE WebPACK™ Design Tools</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ChipScope™ Pro Tool and ChipScope Pro Serial I/O Toolkit</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Embedded Development Kit (EDK)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>System Generator for DSP Tool</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Linux Support

The following table lists Linux support.

<table>
<thead>
<tr>
<th>Product</th>
<th>Red Hat Enterprise 4 Workstation (32 & 64 bit)</th>
<th>Red Hat Enterprise 5 Workstation (32 & 64 bit)</th>
<th>Red Hat Enterprise 6 Workstation (32 & 64 bit)</th>
<th>SUSE Linux Enterprise 11 (32 & 64 bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Entry and Implementation Tools (ISE Design Suite 13)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ISE Simulator (ISim) Tool</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ISE WebPACK Design Tools</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ChipScope Pro Tool and ChipScope Pro Serial I/O Toolkit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Embedded Development Kit (EDK)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>System Generator for DSP Tool</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Architectures

ISE Design Suite 13 supports the Virtex® device, Spartan® device, and CPLD device architecture families. The following table lists the architecture support.

<table>
<thead>
<tr>
<th>Table 3-3: Architecture Support</th>
</tr>
</thead>
</table>

Table 3-3: Architecture Support

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtex Series</td>
<td></td>
</tr>
<tr>
<td>Virtex-4 devices:</td>
<td>Virtex-4 devices:</td>
</tr>
<tr>
<td>LX: XC4VLX15, XC4VLX25</td>
<td>LX: All</td>
</tr>
<tr>
<td>SX: XC4VSX25</td>
<td>SX: All</td>
</tr>
<tr>
<td>FX: XC4VFX12</td>
<td>FX: All</td>
</tr>
<tr>
<td>Virtex-5 devices:</td>
<td>Virtex-5 devices:</td>
</tr>
<tr>
<td>LX: XC5VLX30, XC5VLX50</td>
<td>LX: All</td>
</tr>
<tr>
<td>LXT: XC5VLX20T, XC5VLX30T, XC5VLX50T</td>
<td>LXT: All</td>
</tr>
<tr>
<td>FXT: XC5VFX30T</td>
<td>SXT: All</td>
</tr>
<tr>
<td>Virtex-6 devices:</td>
<td>TXT: All</td>
</tr>
<tr>
<td>LXT: XC6VLX75T, XC6VLX75TL</td>
<td>FXT: All</td>
</tr>
<tr>
<td>Virtex-7 devices:</td>
<td>Note: Embedded Development Kit (EDK) does not support Virtex-5 TXT devices.</td>
</tr>
<tr>
<td>None</td>
<td>Virtex-6 devices:</td>
</tr>
<tr>
<td>LXT/T: All including "L" (lower power) devices</td>
<td>LX/T: All including "L" (lower power) devices</td>
</tr>
<tr>
<td>CXT: All</td>
<td>CXT: All</td>
</tr>
<tr>
<td>SXT: All including "L" devices</td>
<td>SXT: All including "L" devices</td>
</tr>
<tr>
<td>HXT: All</td>
<td>HXT: All</td>
</tr>
<tr>
<td>Note: Embedded Development Kit (EDK) does not support Virtex-6 HXT devices.</td>
<td>Virtex-7 devices:</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kintex Series</th>
<th>Kintex-7 devices:</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC7K70T</td>
<td>All</td>
</tr>
<tr>
<td>XC7K160T</td>
<td>All</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Artix Series</th>
<th>Artix-7 devices:</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC7A100T</td>
<td>All</td>
</tr>
<tr>
<td>XC7A200T</td>
<td>All</td>
</tr>
</tbody>
</table>

Note: Embedded Development Kit (EDK) does not support Virtex-6 HXT devices.
Table 3-3: Architecture Support

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartan Series</td>
<td>Spartan-3 devices: XC3S50 - XC3S1500</td>
<td>Spartan-3 devices: All</td>
</tr>
<tr>
<td></td>
<td>Spartan-3A devices: All</td>
<td>Spartan-3A devices: All</td>
</tr>
<tr>
<td></td>
<td>Spartan-3AN devices: All</td>
<td>Spartan-3AN devices: All</td>
</tr>
<tr>
<td></td>
<td>Spartan-3A DSP devices: XC3SD1800A</td>
<td>Spartan-3A DSP devices: All</td>
</tr>
<tr>
<td></td>
<td>Spartan-3E devices: All</td>
<td>Spartan-3E devices: All</td>
</tr>
<tr>
<td></td>
<td>Spartan-3L devices: XC3S1000L, XC3S1500L</td>
<td>Spartan-3L devices: All</td>
</tr>
<tr>
<td></td>
<td>XA* Spartan-3 devices: All</td>
<td>XA* Spartan-3 devices: All</td>
</tr>
<tr>
<td></td>
<td>XA* Spartan-3E devices: All</td>
<td>XA* Spartan-3E devices: All</td>
</tr>
<tr>
<td></td>
<td>XA* Spartan-3A devices: All</td>
<td>XA* Spartan-3A devices: All</td>
</tr>
<tr>
<td></td>
<td>XA* Spartan-3A DSP devices: XC3SD1800A</td>
<td>XA* Spartan-3A DSP devices: All</td>
</tr>
<tr>
<td></td>
<td>Spartan-6 devices:</td>
<td>Spartan-6 device: LX/T: All including "L" (lower power) devices</td>
</tr>
<tr>
<td></td>
<td>LX: XC6SLX4(L)-XC6SLX75(L)</td>
<td>XA* Spartan-6 devices: All</td>
</tr>
<tr>
<td></td>
<td>LXT: XC6SLX25T, XC6SLX45T, XC6SLX75T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XA* Spartan-6 devices: All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Xilinx Automotive</td>
<td>*Xilinx Automotive</td>
</tr>
<tr>
<td>CoolRunner™ XPLA3 devices</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>CoolRunner-II devices</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>XA* CoolRunner-II devices</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>*Xilinx Automotive</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Note: Embedded Development Kit (EDK) does not support CPLDs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XC9500 Series devices</td>
<td>All (Except 9500XV family)</td>
<td>All (Except 9500XV family)</td>
</tr>
<tr>
<td>*Xilinx Automotive</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Note: Embedded Development Kit (EDK) does not support CPLDs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compatible Third-Party Tools

<table>
<thead>
<tr>
<th>Third-Party Tool</th>
<th>Red Hat Linux</th>
<th>Red-Hat Linux-64</th>
<th>SUSE Linux</th>
<th>Windows XP 32-bit</th>
<th>Windows XP-64 bit</th>
<th>Windows-7 32-bit</th>
<th>Windows-7 64-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentor Graphics ModelSim SE (6.6d)</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Mentor Graphics ModelSim PE (6.6d)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Mentor Graphics ModelSim DE (6.6d)</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
System Requirements

This section provides information on system memory requirements, cable installation, and other requirements and recommendations.

System Memory Recommendations

This section gives the RAM and swap space needed to run ISE Design Suite 13 on your system. The tables below are intended to assist when ordering or building a computer to run FPGA implementation tools. These guidelines are based on peak memory requirements for a given device size. For typical memory requirements, please see:

<table>
<thead>
<tr>
<th>Third-Party Tool</th>
<th>Red Hat Linux</th>
<th>Red-Hat Linux-64</th>
<th>SUSE Linux</th>
<th>Windows XP 32-bit</th>
<th>Windows XP-64 bit</th>
<th>Windows-7 32-bit</th>
<th>Windows-7 64-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mentor Graphics Questa® Advanced Simulator (6.6d)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Cadence Incisive® Enterprise Simulator (IES) (10.2)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Synopsys VCS® and VCS MX (2011.12)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>The MathWorks MATLAB® (2011a, 2011b)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>The MathWorks Simulink® with Fixed-Point Toolbox (2011a, 2011b)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Synopsys Synplify®/Synplify Pro (F-2011.09-SP1)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Mentor Graphics Precision® RTL/Plus (2010a)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Cadence Encounter® Conformal® (9.1)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Memory Requirements Tables

Table 3-4: Peak Memory Requirements: 32-bit OS

<table>
<thead>
<tr>
<th>Memory: 32-bit OS</th>
<th>Family</th>
<th>Device Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2GB</td>
<td>Spartan-3</td>
<td>3S50 - 3S2000</td>
</tr>
<tr>
<td></td>
<td>Spartan-6</td>
<td>6S4 - 6S45</td>
</tr>
<tr>
<td></td>
<td>Virtex-4</td>
<td>4V12 - 4V25</td>
</tr>
<tr>
<td></td>
<td>Virtex-5</td>
<td>5V20 - 5V50</td>
</tr>
<tr>
<td></td>
<td>Kintex-7</td>
<td>7K70</td>
</tr>
<tr>
<td>4GB</td>
<td>Spartan-3</td>
<td>3S3400 - 3S5000</td>
</tr>
<tr>
<td></td>
<td>Spartan-6</td>
<td>6S75 - 6S150</td>
</tr>
<tr>
<td></td>
<td>Virtex-4</td>
<td>4V35 - 4V60</td>
</tr>
<tr>
<td></td>
<td>Virtex-5</td>
<td>5V70 - 5V130</td>
</tr>
<tr>
<td></td>
<td>Virtex-6</td>
<td>6V75</td>
</tr>
<tr>
<td></td>
<td>Kintex-7</td>
<td>7K160</td>
</tr>
</tbody>
</table>

Table 3-5: Peak Memory Requirements: 64-bit OS

<table>
<thead>
<tr>
<th>Memory: 64-bit OS</th>
<th>Family</th>
<th>Device Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2GB</td>
<td>Spartan-3</td>
<td>3S50 - 3S1400</td>
</tr>
<tr>
<td></td>
<td>Spartan-6</td>
<td>6S4 - 6S16</td>
</tr>
<tr>
<td></td>
<td>Virtex-4</td>
<td>4V12 - 4V25</td>
</tr>
<tr>
<td>4GB</td>
<td>Spartan-3</td>
<td>3S1500 - 3S5000</td>
</tr>
<tr>
<td></td>
<td>Spartan-6</td>
<td>6S45</td>
</tr>
<tr>
<td></td>
<td>Virtex-4</td>
<td>4V20 - 4V60</td>
</tr>
<tr>
<td></td>
<td>Virtex-5</td>
<td>5V20 - 5V110</td>
</tr>
<tr>
<td></td>
<td>Virtex-6</td>
<td>6V75</td>
</tr>
<tr>
<td></td>
<td>Kintex-7</td>
<td>7K70 - 7K160</td>
</tr>
<tr>
<td>8GB</td>
<td>Virtex-4</td>
<td>4V140 - 4V200</td>
</tr>
<tr>
<td></td>
<td>Virtex-5</td>
<td>5V220 - 5V240</td>
</tr>
<tr>
<td></td>
<td>Virtex-6</td>
<td>6V195 - 6V240</td>
</tr>
<tr>
<td></td>
<td>Kintex-7</td>
<td>7K325</td>
</tr>
</tbody>
</table>
System Requirements

The Microsoft Windows and Linux® operating system (OS) architectures have limitations on the maximum memory available to a Xilinx program. Users targeting the largest devices and most complex designs may encounter this limitation. ISE Design Suite 13 has optimized memory and enabled support for applications to increase RAM memory available to Xilinx tools.

Windows XP Professional 32-bit

Xilinx applications are enabled to take advantage of the memory increase feature on Windows 32-bit. You must then modify Windows setting to get access to this larger memory.

The standard Windows OS architecture limits the maximum memory available to a Xilinx process to 2 Gigabyte (GB). In Windows XP Professional, Microsoft created an option to support the ability of an application to address 3 GB of RAM. Xilinx ISE applications have built-in support for this option. To take advantage of this capability, you must also modify your Windows XP OS to enable this feature, which requires that you modify your boot.ini file by adding a “/3GB” entry to the end of the “startup” line.

Before enabling 3 GB support for Xilinx applications, please read the Microsoft Knowledge Base Article #328269 at http://support.microsoft.com/?kbid=328269. If you upgrade your computer to Windows XP Service Pack 1 (SP1) and you are using the /3GB switch, Windows may not restart without a patch from Microsoft. Please see (Xilinx Answer 17905) for more information.

Additionally, before making this change, please read:

- Microsoft Bulletin Q17193 http://support.microsoft.com/default.aspx?scid=kb:en-us;Q17193, which contains information on “Application Use of 4GT RAM Tuning”.

<table>
<thead>
<tr>
<th>Memory: 64-bit OS</th>
<th>Family</th>
<th>Device Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>12GB</td>
<td>Virtex-5</td>
<td>5V330</td>
</tr>
<tr>
<td></td>
<td>Virtex-6</td>
<td>6V315 - 6V365</td>
</tr>
<tr>
<td></td>
<td>Kintex-7</td>
<td>7K410</td>
</tr>
<tr>
<td></td>
<td>Virtex-7</td>
<td>7V450 - 7V485</td>
</tr>
<tr>
<td>16GB</td>
<td>Virtex-6</td>
<td>6V380 - 6V550</td>
</tr>
<tr>
<td></td>
<td>Virtex-7</td>
<td>7V585 - 7V855</td>
</tr>
<tr>
<td>20GB</td>
<td>Virtex-6</td>
<td>6V565 - 6V760</td>
</tr>
<tr>
<td></td>
<td>Virtex-7</td>
<td>7V865 - 7V870</td>
</tr>
<tr>
<td>24GB</td>
<td>Virtex-7</td>
<td>7V1500</td>
</tr>
<tr>
<td>32GB</td>
<td>Virtex-7</td>
<td>7V2000</td>
</tr>
</tbody>
</table>

Table 3-5: Peak Memory Requirements: 64-bit OS
Linux

ISE Design Suite 13 supports both Linux 32-bit and Linux 64-bit. The latter allows greater memory allocation. Xilinx has documented Linux kernel modifications that allow a Xilinx application to address over 3 GB of memory.

For 32-bit Red Hat Enterprise Linux systems, the operating system can use the hugemem kernel to allocate 4 GB to each process. More information can be found on the Red Hat support site: http://www.redhat.com/docs/manuals/enterprise/

ISE supports the 64-bit version of Red Hat Enterprise Linux, which allows greater memory allocation out of the box.

Cable Installation Requirements

Platform Cable USB II and Parallel Cable IV are high-performance cables that enable Xilinx® design tools to program and configure target hardware.

To install Platform Cable USB II, a system must have at least a USB 1.1 port. For maximum performance, Xilinx recommends using Platform Cable USB II with a USB 2.0 port.

To install Parallel Cable IV, a system must have a parallel port connector and support parallel port communication.

Cables are officially supported on the 32-bit and 64-bit versions of the following operating systems: Windows XP Professional, Windows-7, Red Hat Linux Enterprise, and SUSE Linux Enterprise 11. Additional platform specific notes are as follows:

- All Linux: Root privileges are required to install cable drivers on Linux.
- SUSE Linux Enterprise 11: The fxload software package is required to ensure correct Platform Cable USB II operation. The fxload package is not automatically installed on SUSE Linux Enterprise 11 distributions, and must be installed by the user or System Administrator.
- Linux LibUSB support: Support for Platform Cable USB II based upon the LibUSB package is now available from the Xilinx website. See [Answer Record #29310](http://www.xilinx.com) for details.

For additional information regarding Xilinx cables, refer to the following documents:

- [USB Cable Installation Guide (UG344)](http://www.xilinx.com)
- [Platform Cable USB II Data Sheet (DS593)](http://www.xilinx.com)
- [Parallel Cable IV Data Sheet (DS097)](http://www.xilinx.com)
Equipment and Permissions

The following table lists related equipment, permissions, and network connections.

Table 3-6: Equipment and Permissions Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory permissions</td>
<td>Write permissions must exist for all directories containing design files to be edited.</td>
</tr>
<tr>
<td>Monitor</td>
<td>16-bit color VGA with a minimum recommended resolution of 1024 by 768 pixels.</td>
</tr>
<tr>
<td>Drive</td>
<td>You must have a DVD-ROM for ISE Design Suite (if you have received a DVD, rather than downloading from the web), and CD-ROM for MXE on your system.</td>
</tr>
<tr>
<td>Ports</td>
<td>To program devices, you must have an available parallel, or USB port appropriate for your Xilinx programming cable. Specifications for ports are listed in the documentation for your cable. Note: Installation of the cable driver software requires Windows XP Pro SP1 (or later), or Windows-7. If you are not using one of these operating systems, the cables may not work properly.</td>
</tr>
</tbody>
</table>

Note: X Servers/ Remote Desktop Servers, such as Exceed, ReflectionX, and XWin32, are not supported.

Network Time Synchronization

When design files are located on a network machine, other than the machine with the installed software, the clock settings of both machines must be set the same. These times must be synchronized on a regular basis for continued proper functioning of the software.
Chapter 4

Technical Support, Services, and Documentation

This chapter describes how to access technical support, services, and documentation that are available. This chapter contains the following sections:

- Technical Support
- Education Services
- Documentation

Technical Support

For technical questions, visit the Xilinx® support site, www.xilinx.com/support/

where you can search the Answers Database or utilize the following self support features:

- Design Resources - Video Demonstrations, www.xilinx.com/design

If you cannot resolve your issue using our online resources, you can contact Xilinx Technical Support directly at:

www.xilinx.com/support/techsup/tappinfo.htm

Education Services

Xilinx provides targeted, high-quality education services designed by experts in programmable logic design, and delivered by Xilinx qualified trainers. Available are onsite and online instructor led courses, and recorded e-learning for self paced learning.

For more information on training courses, free on-demand training, live online training, and upcoming events, visit the Xilinx Training website,

www.xilinx.com/support/education-home.htm
Documentation

Xilinx offers technical documentation to assistant users with using the ISE® Design Suite tools.

Context-Sensitive Help

Context-sensitive online Help is available for most ISE Design Suite tools that are available with a graphical user interface (GUI). From Project Navigator, select Help > Help Topics to access the online Help.

Software Manuals

Detailed software manuals about the ISE Design Suite applications and command-line functions are included as part of the software installation. After you install the software, you can select the Help > Software Manuals command in Project Navigator to access the software manuals collection.

Note: If you do not already have Adobe Acrobat Reader installed, you must do so to view the software manuals.

To locate the Software Manuals on the website:

2. Click the Design Tools tab.
3. Click the Design Tool category, such as ISE, or click the See All Design Tools Documentation link.

Third-Party Licenses

The Third-Party Licenses govern the use of certain third-party technology included in and/or distributed in connection with the Xilinx ISE® Design Suite tools. Each license applies only to the applicable technology expressly governed by such license and not to any other technology.

To view the Third-Party Licenses details, see the Xilinx Third-Party Licenses Guide.