SDSoC Environment
Debugging Guide

& XILINX

https://www.xilinx.com

& XILINX

Revision History

The following table shows the revision history for this document.

Section Revision Summary

07/02/2018 Version 2018.2

Entire document | Editorial updates.

06/06/2018 Version 2018.2

General updates | Initial Xilinx release.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=2

& XILINX

Table of Contents

REVISION HISTOKY ...ttt ssssssssssssssssssssssssssssssssssasens 2
Chapter 1: Introduction to Debugging in SDSoC.............mrrevrevrenennes 4
SDSOC ENVIrONMENT OVEIVIEW.....coiiviiiiiiiiriiiiiiienicnitciesresit et n e snesn e s 4
SDSOC Debug FIOW OVEIVIEW........coviiiiriiiciiciittc e 12
Chapter 2: SDSOC Debug Features.......... v eenenenenesesensssessnssssesssssssens 18
Debug Tools Available in the SDX ENVIrONMENt.......cccoviiiiriiieeeee e 18
SYSTEM EMUIGEION....iiiieiiiiiectceeere ettt s e e s e e st e e saaesbeesanesnsaenas 26
Hardware Execution Features Available to All Platforms..........ccevevnvnennininccnincnnene. 33
Hardware/Software EVENT TraCiNg.....cccuvueereeiereriereisieesieresesseesseseseesesessesessesesessesessesessssesesns 45
Chapter 3: Debug TEChNIQUES...........rerresreseeeesesssssessessessessesenns 49
Debugging System Hangs and RUNTIME EFTOrS.......coceveviriririeiienienieneneneeeeeevesnesve e 50
Peeking and POKING IP REQISTEIS....ccuiiiiiieierierieeieete ettt sttt sre st s esne s 58
EVENT TraCiNg . .ce ettt bbb s e ssbe e sane s 59
Debugging with Software/Hardware Cross Probing.........ccccceeeeveveereenreeseserenserereee e 62
Tips for Debugging PerformanCe.......co.oiiierieeiinieieeeeneeee ettt st s saeens 63
Troubleshooting Compile and Link TIMe Errors........ooeiienienieneeeneeseeeesee e 64
Troubleshooting Performance ISSUES..........coiiiiriereneneneeeetee ettt 65
Appendix A: SDSoC Environment Troubleshooting..............cccececuuee..e. 67
Appendix B: Additional Resources and Legal Notices............................. 68
XIlINX RESOUICES.....eoiiiiiiiiiiiicictt e s 68
Documentation Navigator and Design HUDS........cc.coiiiiiirieneneeee e 68
RETEIEINCES. ...ttt 69
TrAINING RESOUICES...coouiiiiieeiieeiieete ettt ettt st et e st esbeesaaesbeesstessaesasessaesasessseesasesnseens 70
Please Read: Important Legal NOTICES.......cccoeviririniiietieieeesee e 70

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=3

& XILINX

Chapter 1

Introduction to Debugging in
SDSoC

The Software-Defined Sytem-On-Chip (SDSoC™) Environment is a tool suite that includes an
Eclipse-based integrated development environment (IDE) for implementing heterogeneous
embedded systems. SDSoC supports Arm® Cortex™-based applications using the Zyngq®-7000
SoC and Zyng UltraScale+ MPSoC devices, as well as MicroBlaze™ processor-based applications
on all Xilinx® SoCs and FPGAs.

This user guide is intended to introduce SDSoC debugging capabilities. The goal is to provide you
with detailed instructions on how to analyze any failure encountered within the SDSoC flow. It is
important to note that if no tool problems are encountered and the behavior of the design is
deemed functionally correct, you can look for answers in the SDSoC Environment Profiling and
Optimization Guide (UG1235) to examine whether the performance of the design can be further
improved.

The systems produced by the SDSoC Environment are high-performance and complex hardware
and software. There are different aspects to debugging a SDSoC design.

SDSoC Environment Overview

The SDSoC™ Environment also includes system compilers that transform C/C++ programs into
complete hardware/software systems with select functions compiled into programmable logic.

The SDSoC system compilers analyze a program to determine the data flow between software
and hardware functions, and generate an application specific system-on-chip to realize the
program. To achieve high performance, each hardware function runs as an independent thread;
the system compilers generate hardware and software components that ensure synchronization
between hardware and software threads, while enabling pipelined computation and
communication. Application code can involve many hardware functions, multiple instances of a
specific hardware function, and calls to a hardware function from different parts of the program.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 4

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=4

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

The SDSoC IDE supports software development workflows including profiling, compilation,
linking, system performance analysis, and debugging. In addition, the SDSoC environment
provides a fast performance estimation capability to enable "what if" exploration of the
hardware/software interface before committing to a full hardware compile.

The SDSoC system compilers target a base platform and invoke the Vivado® High-Level
Synthesis (HLS) tool to compile synthesizeable C/C++ functions into programmable logic. They
then generate a complete hardware system, including DMAs, interconnects, hardware buffers,
other IP, and the Field Programmable Gate Array (FPGA) bitstream by invoking the Vivado Design
Suite tools. To ensure all hardware function calls preserve their original behavior, the SDSoC
system compilers generate system-specific software stubs and configuration data. The program
includes function calls to drivers required to use the generated IP blocks. Application and
generated software is compiled and linked using a standard GNU toolchain.

By generating complete applications from “single source,” the system compilers let you iterate
over design and architecture changes by refactoring at the program level, reducing the time
needed to achieve working programs running on the target platform.

Terminology

The following terms are widely used in the context of SDSoC™ designs. The terms are their
description is provided below.

e Accelerators: Portions of the application code that have been implemented in the hardware in
the FPGA fabric. These are also called hardware functions.

e Data Movers: The data mover transfers data between Processing System and accelerators,
and among accelerators. The SDSoC Environment can generate various types of data movers
based on the properties and size of the data being transferred.

¢ Pipelining: Pipelining is a digital design technique that allows the designer to avoid data
dependencies and increase the level of parallelism in an algorithm hardware implementation.
The data dependence in the original software implementation is preserved for functional
equivalence, but the required circuit is divided into a chain of independent stages. All stages in
the chain run in parallel on the same clock cycle. The only difference is the source of data for
each stage. Each stage in the computation receives its data values from the result computed
by the preceding stage during the previous clock cycle.

e Pragmas: Special directives that can be inserted int the source code to guide the system
compiler. In the SDSoC Environment, you control the system generation process by
structuring hardware functions and calls to hardware functions to balance communication and
computation, and by inserting pragmas into your source code to guide the system compiler.

e Processors: Processors in the context of the SDSoC Environment mean a soft processor such
as a MicroBlaze™ or a hard processor such as the Arm® processors on Zynq®-7000 SoCs and
Zynq® UltraScale+™ MPSoC.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I c

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=5

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

e System Port: A system port connects a data mover to the PS. It can be an ACP, AFI
(corresponding to high-performance ports), MIG (corresponding to a PL-based DDR memory
controller), or a stream port on the Zyng.

Elements of SDSoC

The SDSoC™ Environment inherits many of the tools in the Xilinx® Software Development Kit
(SDK), including:

¢ GNU toolchains and standard libraries (for example, glibc)
e The Target Communication Framework (TCF)
e A performance analysis perspective within the Eclipse/CDT-based GUI

e Command-line tools

The SDSoC Environment includes the sds++ compiler that generates complete hardware/
software systems, an Eclipse-based user interface to create and manage projects and workflows,
and a system performance estimation capability to explore different "what if" scenarios for the
hardware/software interface.

The sds++ compiler employs underlying tools from the Vivado® Design Suite (System Edition),
including Vivado HLS, IP integrator, IP libraries for data movement and interconnect, and the RTL
synthesis, placement, routing, and bitstream generation tools.

The principle of design reuse underlies workflows that you employ with the SDSoC Environment,
using well-established platform-based design methodologies. The SDSoC system compiler
generates an application-specific system-on-chip for a targeted platform. The environment
includes a number of standard base-platforms for application development, and other platforms
can be developed by third-party partners, or by SDSoC design teams. The SDSoC Environment
Platform Development Guide (UG1146) describes how to create a platform design using the
Vivado Design Suite, specify platform properties to define and configure platform interfaces, and
define the corresponding software run-time environment to build a platform for use in the
SDSoC Environment.

An SDSoC platform defines a base hardware and software architecture and application context,
including:

e Processing system
e External memory interfaces
e Custom /0O

e Embedded processor operating system:

Boot loaders

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 6

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=6

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

Drivers for root system and peripherals

Every project you create within the SDSoC Environment targets a specific platform, and you
employ the tools within the SDx™ IDE to customize the platform with application-specific
hardware accelerators and data motion networks connecting accelerators to the platform. In this
way, you can easily create highly tailored application-specific systems-on-chip for different base
platforms, and can reuse base platforms for many different application-specific systems-on-chip.

A simplified Zyng® and DDR configuration with memory access ports and hardware accelerators
is shown below.

Figure 1: Simplified Zynq + DDR Diagram Showing Memory Access Ports and Memories

Zynq Processing System (PS)

ARM A9 L2 Cache Memory DDR

Processor Memory Controller Memory

I I I
GPx ACP HPx/AFI
DMAT1 DMA2

Hardware Hardware

Function1 Function2
Zynq Programmable Logic (PL)

X14709-061518

Execution Model of an SDSoC Application

The execution model for an SDSoC™ application can be understood in terms of the normal
execution of a C++ program running on the target CPU after the platform has booted. It is useful
for the programmer to be aware of how a C++ binary executable interfaces to hardware.

The set of declared hardware functions within a program is compiled into hardware accelerators
that are accessed with the standard C run time through calls into these functions. Each hardware
function call in effect invokes the accelerator as a task, and each of the arguments to the
function is transferred between the CPU and the accelerator, accessible by the program after
accelerator task completion. Data transfers between memory and accelerators are accomplished
through data movers; either a direct memory access (DMA) engine automatically inserted into
the system by the sds++ system compiler, or by the hardware accelerator itself (such as the a
zero_copy data mover).

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide | Send Feedback I 7

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=7

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

Figure 2: Architecture of an SDSoC System

SDSoC Platform

DDR Banks
P Ay <
Embedded Processor (PS
Rggion) I Programmable Logic
Operating System Data Movers > (PL Region)
Drivers N | Hardware Function Accelerators
Application Code

¢ v_{ Direct I/0 Access

Peripherals
(Vision, Graphics, Measurement...)

¥20878-061518

To ensure program correctness, the system compiler intercepts each call to a hardware function
and replaces it with a call to a generated stub function that has an identical signature, but with a
derived name. The stub function orchestrates all data movement and accelerator operation,
synchronizing software and accelerator hardware at exit of the hardware function call. Within the
stub, all accelerator and data mover control is realized through a set of send/receive APIs
provided by the sds_11ib library.

When program dataflow between hardware function calls involves array arguments that are not
accessed after the function calls have been invoked within the program (other than destructors
or free () calls), and when the hardware accelerators can be connected via streams, the system
compiler will transfer data from one hardware accelerator to the next through direct hardware
stream connections rather than implementing a round trip to and from memory. This
optimization can result in significant performance gains and reduction in hardware resources.

At a high level, the SDSoC execution model of a program includes the following steps.

1. Initialization of the sds_11ib library occurs during the program's constructor before entering
madin().

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 8

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=8

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

2. Within a program, every call to a hardware function is intercepted by a function call into a
stub function with the same function signature (other than name) as the original function.
Within the stub function, the following steps occur:

a. A synchronous accelerator task control command is sent to the hardware.

b. For each argument to the hardware function, an asynchronous data transfer request is
sent to the appropriate data mover, with an associated wait () handle. A non-void return
value is treated as an implicit output scalar argument.

c. Abarrier wait () isissued for each transfer request. If a data transfer between
accelerators is implemented as a direct hardware stream, the barrier wait () for this
transfer occurs in the stub function for the last in the chain of accelerator functions for
this argument.

3. Cleanup of the sds_11ib library occurs during the program's destructor upon exiting
main().

O TIP: Steps 2a-c ensure that program correctness is preserved at entrance and exit of accelerator
pipelines, while enabling concurrent execution within the pipelines.

Sometimes the programmer has insight of potential concurrent execution of accelerator tasks
that cannot be automatically inferred by the system compiler. In this case, the sds++ system
compiler supports a #pragma SDS async (ID) that can be inserted immediately preceding a
call to a hardware function. This pragma instructs the compiler to generate a stub function
without any barrier wait () calls for data transfers. As a result, after issuing all data transfer
requests, control returns to the program, enabling concurrent execution of the program while the
accelerator is running. In this case, it is the programmer's responsibility to insert a #pragma SDS
wait (ID) within the program at appropriate synchronization points, which are resolved into
sds_wait (ID) API calls to correctly synchronize hardware accelerators, their implicit data
movers, and the CPU.

i} IMPORTANT!: Every async (ID) pragma requires a matching wa z ¢ (ID) pragma.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 9

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=9

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

SDSoC Build Process

The SDSoC™ environment offers all of the features of a standard software development
environment: optimized cross-compilers for the embedded processor application and the
hardware function, robust debugging environment to help you identify and resolve issues in the
code, performance profilers to let you identify the bottlenecks and optimize your code. Within
this environment the SDSoC build process uses a standard compilation and linking process.
Similar to g++, the sds + + system compiler invokes sub-processes to accomplish compilation and

linking.

As shown in the image below, compilation is extended not only to object code that runs on the
CPU, but also includes compilation and linking of hardware functions into IP blocks using the
Vivado® HLS tool, and creating standard object files (.0) using the target CPU toolchain. System
linking consists of program analysis of caller/callee relationships for all hardware functions, and
generation of an application-specific hardware/software network to implement every hardware
function call. The sds++ system compiler invokes all necessary tools, including Vivado HLS
(function compiler), the Vivado® Design Suite to implement the generated hardware system, and
the Arm® compiler and linker to create the application binaries that run on the CPU, invoking the
accelerator (stubs) for each hardware function by outputting a complete bootable system for an
SD card.

Figure 3: SDSoC Build Process

Embedded System Source Code

—
C/C+ Embedded Processor Hardware RTL, C/C++
Application Functions
./
Arm Build Programmable Logic
Steps | [Build Steps
—
GNU Arm SDS++ HLS Function
Toolchain Compilation Compile
Application Update SW SDS++ Vivado FPGA Binary
Executable Fe i Dot (bitstream)
(-elf) N

Bootable System Image

X21126-062818

e The compilation process includes the following tasks:

Analyze the code and run a compilation for the main application running on the Arm
processor, and a separate compilation for each of the hardware accelerators.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 10

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=10

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

The application code is compiled through standard GNU Arm compilation tools with an
object (. o) file produced as final output.

. The hardware accelerated functions are run through the Vivado® HLS tools, to start the
process of custom hardware creation, with an object (. o) file as output.

e After compilation, the linking process includes the following tasks:

- Analyze the data movement through the design, and modify the hardware platform to
accept the accelerators.

Implement the hardware accelerators into the programmable logic (PL) region using the
Vivado® Design Suite to run synthesis and implementation, and generate the bitstream for
the device.

Update the software images with hardware access APIs, to call the hardware functions
from the embedded processor application.

Produce an integrated SD Card image that can boot the board with the application in an
ELF file.

Build Targets

As an alternative to building a complete system, you can create an emulation model that will
consist of the same platform and application binaries. In this target flow, the sds ++ system
compiler will create a simulation model using the source files for the accelerator functions.

The SDSoC environment provides two different build targets, an emulation target used for debug
and validation purposes and the system hardware target used to generate the actual FPGA
binary:

e System Emulation: With system emulation you can debug RTL level transactions in the entire
system (PS/PL). Running your application on SDSoC emulator (sdsoc_emulator) gives you
visibility of data transfers with a debugger. You can debug system hangs, and can inspect
associated data transfers in the simulation waveform view, which gives you visibility into
signals on the hardware blocks associated with the data transfer.

e Hardware: During hardware execution, you can use the actual hardware platform to run the
accelerated hardware functions. The difference between a debug system configuration and
the final build of the application code, and the hardware functions, is the inclusion of special
debug logic in the platform, such as System ILAs and VIO debug cores, and AXI performance
monitors for debug purposes.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 11

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=11

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

SDSoC Debug Flow Overview

The systems produced by the SDSoC™ Environment are high-performance and complex systems,
composed of hardware and software components. It can be difficult to understand the execution
of applications in such systems with portions of software running in a processor, hardware
accelerators executing in the programmable fabric, and many simultaneous data transfers
occurring. The SDSoC environment lets you create and debug projects using the Xilinx® Software
Debugger, and provides sophisticated hardware/software event tracing with automatic system
instrumentation that provides an integrated time line view of data transfers and accelerator tasks
including driver software setup as well as execution in hardware. Outside the SDx™ IDE, you can
use command-line or scripting options to debug your projects.

There are several aspects to debugging an SDSoC project. After you identify the hardware
functions, you can use system emulation to compile the logic and verify the entire system. This
provides a QEMU based emulator that runs the cross-compiled Arm® code, interacting with the
XSim RTL simulator within the Vivado® Design Suite. Together, the emulator runs the same
binaries as would run in hardware, with full visibility into the hardware; the RTL simulator can
display waveforms or can be run without waveforms for faster simulation speed. The emulator
can be run within the SDx IDE or on the command line (sdsoc_emulator), providing accurate
visibility of the final hardware implementation without the need to compile the system into a
bitstream and program the device on the board.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 12

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=12

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

Figure 4: System Emulation Flow

—» SwApp Code |

A 4

Standard
SW Debug

unctionally
Correct?

To Build in HW,
Trace Events,
Customp Profile &

Platform?

Optimize
x
5
v
o Build SW App
- with/without
») HW Function for
Debug in Emulation
Emulation
To Build in HW,
N unctionally Trace Events,
i Correct? Yes—» Profile &

Optimize
X21074-061518

You can also enable hardware and software event tracing to analyze the execution of events and
identify any issues. Finally, if there are problems with respect to the hardware design itself, you
can use hardware debug in ChipScope by inserting debug cores in the hardware functions
implemented on the SDSoC platform. The following flow chart shows a typical hardware build

and debug process.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 13

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=13

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

Figure 5: Hardware Build and Debug Flow

See UG1027 for
SDSoC
Environment

Troubleshooting | No

Buildin HW,
Successful completion o/ TraceEvents, | HW Build
of emulation ” Profile & Success?
Optimize
Switch to Xilinx ¢
To SWAPP <«— PFaformfor [«
Code further Debu
9 Run on HW
Categorize failure
and Fix
App Bad
ToSWAPP crash Data
Code P No unctionall
App Board ™ Correct?
Hang Hang
<
To SW APP | Hardware Debug |
Code y using Chipscope |
"See UG1235 for .
ToSWAPP Performance AT ormgnoe
Code h and met?
Optimization

Finish Debug

X21075-061418

You will notice that the two flow diagrams above, System Emulation Flow and Hardware Build
and Debug Flow, are connected together by the "To Build in HW" and the "To SW APP"
connectors. Standard platforms support both flows, while custom platforms without emulation
capabilities support only the hardware build and debug flow.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com

SDSoC Debugging Guide l Send Feedback I 14

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=14

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

System Emulation

By running system emulation you can debug RTL level transactions in the entire system (PS/PL).
Running your application on the SDSoC™ emulator is a good way to gain visibility of data
transfers with a debugger. You will be able to see issues such as a system hang, and can then
inspect associated data transfers in the simulation waveform view, which gives you access to
signals on the hardware blocks associated with the data transfer.

This is one of the most capable debug features in the SDSoC environment. It can help debug
functional issues and determine why an application is hanging. This feature is only available on
Xilinx base platforms.

Base platform: Xilinx provides the ZC702, ZC706, ZCU102, ZCU104, ZCU106 and ZedBoard
base platforms. All platforms support target Linux, FreeRTOS, or Standalone (bare metal).

Event Tracing

The SDSoC™ environment tracing feature provides you a detailed view of what is happening in
the system during the execution of an application. Trace events are produced and gathered into a
timeline view, giving you a perspective of the running application. This detailed view can help
you understand the performance of your application given the workload, hardware/software
partitioning, and system design choices. This view enables event tracing of software running on
the processor, as well as hardware accelerators and data transfer links in the system. Such
information helps you to identify problems, optimize the design, and improve system
implementation.

Tracing an application produces a log that records information about system execution.
Compared to event logging, event tracing shows the correlation between events for the duration
of the event, rather than an instantaneous event at a particular time. The goal of tracing is to help
debug execution by observing what happened when, and how long events took. Tracing shows
the performance of execution with more granularity than overall runtime. This is best used to
analyze performance and get an indication of whether there is an application hang.

Hardware Execution Flow

During hardware execution, you can use the actual hardware platform execute the accelerated
hardware functions. The difference between a debug configuration and the final compilation of
the application code, and the hardware functions, is the inclusion of special debug logic in the
platform, such as System ILAs and VIO debug cores, and AXI performance monitors for debug
purposes. The SDSoC™ Environment provides specific hardware debug capabilities which include
ChipScope debug cores (such as System ILAs), that can be viewed in Vivado® Hardware Manager,
with waveform analysis, kernel activity reports, and memory access analysis to localize these
critical hardware issues.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 15

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=15

iv Xl I_l NX Chapter 1: Introduction to Debugging in SDSoC
A ®

In-system debugging lets you debug your design in real-time, on your target hardware. This is an
essential step in design completion. Invariably, there are situations that are extremely hard to
replicate in a simulator. Therefore, there is a need to debug the problem in the running hardware.
In this step, you place debug cores into your design to provide you the ability to observe and
control the design. After the debugging process is complete, you can remove the debug cores to
increase performance and reduce resource utilization of the device.

The SDx™ IDE and command line options provide ways to instrument your design for debugging.
The - - dk compiler switch lets you add ILA debug cores to the interfaces of your hardware
function, as described in Hardware Debugging in SDSoC Using ChipScope. To debug C-callable IP
that are used in your application code, you must have instantiated the needed debug cores into
the RTL code of the IP prior to packaging it as a C-callable IP.

ﬁ? IMPORTANT!: Debugging the hardware function on the SDSoC platform hardware requires additional
logic to be incorporated into the overall hardware model. This means that if hardware debugging is
enabled, there will be some impact on resource utilization of the Xilinx device, as well as some impact
on the performance of the hardware function.

Connecting to the Hardware

The board connection requirements are slightly different depending on the operating system:
standalone, FreeRTOS, or Linux.

e For standalone and FreeRTOS, you must download the Executable Link Format file (. e1f) to
the board using the USB/JTAG interface. Trace data is read out over the same USB/JTAG
interface as well.

e For Linux, the SDSoC™ environment assumes the OS boots from the SD card. SDx™ then
copies the . e1f and runs it using the TCP/TCF agent running in Linux over the Ethernet
connection between the board and host PC. The trace data is read out over the USB/JTAG
interface. Both USB/JTAG and TCP/TCF agent interfaces are needed for tracing Linux
applications.

The figure below shows the connections required.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 16

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=16

& XILINX

Chapter 1: Introduction to Debugging in SDSoC

Figure 6: Connections Required When Using Trace with Different Operating Systems

Linux
Host PC
Standalone/FreeRTOS
Host PC

Ethernet |«

USB

A

Ethernet

USB |=

Y

Ethernet }
JTAG

Zyng-7000
AP SoC

Board

UG1282 (v2018.2) July 2, 2018

SDSoC Debugging Guide

www.Xilinx.com

\ 4

Ethernet
JTAG }

Zyng-7000
AP SoC

Board

X16744-121417

l Send Feedback I

17

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=17

& XILINX

Chapter 2

SDSoC Debug Features

This section provides details on debugging using the GUI or the command line in the SDx™
Environment. Various aspects of debug are also described in detail.

Debug Tools Available in the SDx
Environment

The SDx™ environment includes the Xilinx® System Debugger (XSDB) for debugging SDSoC™
designs.

Xilinx System Debugger (XSDB)

Xilinx® System Debugger (XSDB) uses the Xilinx hw_server as the underlying debug engine.
SDK translates each user interface action into a sequence of Target Communication Frameworks
(TCF) commands. It then processes the output from System Debugger to display the current state
of the program being debugged. It communicates to the processor on the hardware using Xilinx
hw_server. You can debug multiple processors simultaneously with a single System Debugger
debug configuration. This is the recommended debug engine for SDx™ designs. The System
Debugger can either be launched on the hardware or the QEMU engine.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 18

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=18

iv Xl Ll NX Chapter 2: SDSoC Debug Features
A ®

~
/
/
____________ L 4
' Specify
hw_server —p Cré3te Debug. SDK Debug
i details | Configurations Perspective

hw_server

Program
Running on

Hardware or
ISS

H210TE-061518

The workflow is made up of the following components:

e Executable and Linkable Format (ELF) File: To debug your application, you must use an ELF
or .e1f file compiled for debugging. The debug . e1f file contains additional debug
information for the debugger to make direct associations between the source code and the
binaries generated from that original source. Refer to Build Configurations for more
information.

e Debug Configuration: To launch the debug session, you must create a debug configuration in
the SDx Enviroment. This configuration captures options required to start a debug session,
including the executable name, processor target to debug, and other information. Refer to
Launch Configurations for more information.

e SDx Debug Perspective: Using the Debug Perspective, you can manage the debugging or
running of a program in the Workbench. You can control the execution of your program by
setting breakpoints, suspending launched programs, stepping through your code, and
examining the contents of variables.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide | Send Feedback I 19

https://www.xilinx.com/html_docs/xilinx2018_2/SDK_Doc/SDK_concepts/concept_sdk_build_configurations.html
https://www.xilinx.com/html_docs/xilinx2018_2/SDK_Doc/SDK_concepts/sdk_c_debug_run_configuration.html#sdk_c_debug_run_configuration
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=19

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

You can repeat the cycle of modifying the code, building the executable, and debugging the
program in the SDx Environment.

Note: If you edit the source after compiling, the line numbering will be out of step because the debug
information is tied directly to the source. Similarly, debugging optimized binaries can also cause
unexpected jumps in the execution trace.

Setting Debug Configurations

To debug, run, and profile an application, you must create a launch configuration that captures
the settings for executing the application. The configurations for debugging, running, and
profiling an application are similar. To launch the Debug Configuration dialog, right-click on your
application project, and select Debug As — Debug Configurations. Alternatively, you can also
right-click the Debug item under your Project in the Assistant window, and select Debug =
Debug Configurations from the context menu.

This pops up the Debug Configurations dialog box as shown below. Note that the all the tabs
may not show up in this dialog box based on the application being debugged. The options
presented in these tabs may also be slightly different.

Figure 7: Debug Configurations

Name: | Debugger_mmult_add{Default)

$. Main . [C] Application & Target Setup ®: Arguments| B Environment| &+ Symbaol Files| 5+ Source| & Path Map| [Z] Common

Debug Type: | Linux Application Debug w

Connection: | Linux Agent | New

Mote; TCF agent port should be used as port in the target connection (Default TCF agent port; 1534).

Project: mmult_add Browse...

Configuration: Debug w
[JPerformance Analysis

Various tabs of this dialog box are described in the following sections.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 20

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=20

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Main Tab

The Main tab shows the drop-down menus for Debug Type, and the Connection. It also lets you
change Project or the Configuration of the project. The Debug Type field can be set to
Standalone Application Debug, Linux Application Debug, or Attach to running target.

MName: | Debugger_emulation_project(Emulation)

&2 Main ~_[C] Application| @ Target Setup| #= Arguments B8 Environment| & Symbol Files| % Source| & Path Map] Comman

Debug Type: |Standalone Application Debug ~
Connection: QEMU v | New
Project: emulation_project Browse...

Configuration: | Debug

[+] Emulation

Application Tab

The Application tab shows the processor instance that has been selected to be debugged for the
project, and shows other pertinent information such as the Application . e1f thatis being
downloaded to be run on the processor.

Name: | Debugager_emulation_project(Emulation)

#. Main |1 Application @ Target Setup = Arguments| M Environment & Symbol Files 5~ Source| & Path Map | [Common

Summary

Download Processor Project Application Details

E psi_cortexa9_0 emulation_project Debug/emulation_project.elf stop at entry = false
Target Setup Tab

The Target Setup tab presents the option to specify the Hardware Platform and/or Use FSBL
flow for initialization.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I by

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=21

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Name: | Debugger_emulation_project{Emulation)

¥ Main |] Application | @ Target Setup ~_#= Arguments| B8 Environment| 5+ Symbol Files| &+ Source| & Path Map| [l Common

Hardware Platform: | Debug/_sds/p0/vpl/systemn.hdf Search... Browse...

[use FSBL flow for initialization

Arguments Tab
The Arguments tab lets you specify any variables that are needed for launching the debug

session. Click the Variables button, to bring up the Variables dialog box, which allows you to set a
variable.

Name: | Debugger_emulation_project(Emulation)

¥ Main |C] Application | @ Target Setup | ®= Arguments . B8 Environment | & Symbal Files - Source| & Path Map| T Common
Program Arguments:

Variables

After clicking the Variables button the Select Variable dialog box appears.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com

SDSoC Debugging Guide | Send Feedback | 99

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=22

iv XI LI NX Chapter 2: SDSoC Debug Features
A ®

#* Select Variable O * ‘

Choose a variable (? = any character, * = any string):

bspCmd ~
build_files
build_project
build_type
cdt_pathentry_var
config_description
config_name
container_loc
container_name
container_path
current_date

eclipse_home
ee_home
env_var
file_prompt =
Edit Variables...
Argument:
Configure...

Variable Description:

Returns the set of absolute file system paths whose modification caused the current build. A list of the =
characters, 'a’ (added), ¢’ (changed), " (removed), 'f* (files only), 'd’ (directories only), can be supplied

@ Cancel

Environment Tab

The Environment tab allows you to set any environment variables for the Debug Configurations.

Name: | Debugger_emulation_project(Emulation) |

¥ Main i:IAppIicaticn -@Target Setup o Arguments - Environmer;t &+ Symbaol FilesI k Soun:e- & Path Map; s £nmmon-

Environment variables to set:

Variable Value New...
Select...
Edit...

Remagve

Append environment to native environment

Replace native environment with specified environment

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide |_send Feedback | 23

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=23

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Clicking the Select button brings up the existing environment variable that could be set to
specific values.

Select environment variables to add:

(1M ALLUSERSPROFILE [C:\ProgramData | ~
(] M APPDATA [C:\Users\ndutta\AppData\Roaming]

[JMCHARPOP[1]

[™ COMPUTERNAME [XCONDUTTA31]

|:| B ComSpec [C\wi ndows\system32\cmd.exe |

D'!CGmmonPrograan les [C:\Program Files\Commaoi ,
r3 »

Select All Deselect All

Z - Cancel

Clicking New allows you to create and set a new environment variables.

-
o

Narme;

Value: Variables...

Cancel

Target Connections

The Target Connections view allows you to configure multiple remote targets. It shows
connected targets and gives you an option to add or delete target connections.

The SDx™ Environment establishes target connections through the Hardware Server agent. In
order to connect to remote targets, the hardware server agent must be running on the remote
host, which is connected to the target.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 24

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=24

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

i
0
a

-I‘.‘I-Target Connections 22

~ (= Hardware Server

-4 Local [default]
~ = Linux TCF Agent

< Linux Agent [default]
~ = QEMU TcfGdbClient

4 QEMU [default]

Refer to Connecting to the Hardware for more information.

Debugging Linux Applications in the SDSoC IDE
Within the SDSoC™ IDE, use the following procedure to debug your application:

1. Make sure the board is connected to your host computer using the JTAG Debug connector,
and there is an Ethernet connection between the board and host PC.

Set the board to boot from the SD card, per the relevant SDSoC platform User Guide.
Select the Debug as the active build configuration and build the project.
Copy the generated Debug/sd_card image to an SD card, and boot the board.

Make sure the board is connected to the network, and note its IP address, for example, by

executing ifconfig ethO on the board at the command prompt using a terminal

communicating with the board over UART.

6. Select the Debug As option to create a new debug-configuration, and enter the IP address
for the board.

7. You now switch to the SDSoC Environment debug perspective which allows you to start,

stop, step, set breakpoints, examine variables and memory, and perform various other debug

operations.

vk LN

Debugging Standalone/FreeRTOS Applications in the SDSoC IDE

Use the following procedure to debug a standalone (bare-metal) or FreeRTOS application project
using the SDSoC™ IDE.

1. Make sure the board is connected to your host computer using the JTAG Debug connector,
and set the board to boot from JTAG.

2. Select Debug as the active build configuration, and build the project.

3. Select the Debug As option to create a new debug-configuration.

You now switch to the SDSoC Environment debug perspective, which allows you to start,
stop, step, set breakpoints, examine variables and memory, and perform various other debug
operations.

In the SDSoC IDE toolbar, click the Debug option, which provides a shortcut to the procedure
described above.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 55

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=25

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Xilinx Software Command Line Tool (XSCT)

Graphical development environments such as the Xilinx® SDx™ are useful for getting up to speed
on development for a new processor architecture. It helps to abstract away and group most of
the common functions into logical wizards that even the novice can use. However, scriptability of
a tool is also essential for providing the flexibility to extend what is done with that tool. It is
particularly useful when developing regression tests that will be run nightly or running a set of
commands that are used often by the developer.

Xilinx Software Command-line Tool (XSCT) is an interactive and scriptable command-line
interface to Xilinx SDx. As with other Xilinx tools, the scripting language for XSCT is based on
Tools Command Language (Tcl). You can run XSCT commands interactively or script the
commands for automation. XSCT supports the following actions:

e Create hardware, board support packages (BSPs), and application projects.
e Manage repositories.

e Set toolchain preferences.

e Configure and build BSPs/applications

e Download and run applications on hardware targets.

e Create and flash boot images by running Bootgen and program_flash tools.

For information on XSCT commands please refer to the XSCT section in SDK Online Help
(UG782).

System Emulation

System emulation can be run on System Debugger using the Target Communications Framework
(TCF) Server. Note that emulation is not supported for custom platforms currently. Only the base
platforms provided by Xilinx® support emulation.

Running System Emulation from the GUI

System emulation provides the same level of accuracy as the final implementation without the
need to compile the system into a bitstream and program the device on the board.

Next, see:

e Enabling System Emulation
e Invoking the System Emulator

e Viewing Emulation Output

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 26

https://www.xilinx.com/html_docs/xilinx2018_2/SDK_Doc/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=26

& XILINX

Enabling System Emulation

Chapter 2: SDSoC Debug Features

To enable system emulation, within the Application Project Settings window do the following:

1. Set the Active build configuration to Debug.

2. Set the Target to Emulation.

3. Set the Emulation Model to either Debug or Optimized.

& emulation_project &2
% Application Project Settings

General

Project mame:

emulation_project

Project flow: SD¥EoC
Platfarm: 2702 | -
Runtime: CfCes

System configuration: Standalone | -

Damain: standalone
CPL: ps?_cortexad 0
05 standalone

-~
Acttive build configuration: Debug ~ &

Options

Target: Emulation M

Data motion network clock frequency (MHz): 100,00 s

Emulation model | Debug b

Generate 5D Akt
Optimized

Root function: | main =

Because emulation does not require a full system compile, the tool disables the generation of the
bitstream and Generate SD card image option to improve run time and iteration time. System
emulation allows you to verify and debug the system with the same level of accuracy as a full

bitstream compilation.

Selecting the Emulation Model

Emulation model offers two modes:

e Debug: Builds the system through RTL generation, and the IP integrator block design
containing the hardware function, elaborates the hardware design, and runs behavioral
simulation on the design, with a Waveform viewer to help you analyze the results. Users will
interact with the XSim simulator inside Vivado® Design Suite to analyze the waveforms.

e Optimized: Runs the behavioral simulation in batch mode, returning the results without the
waveform data. While Optimized can be faster, it returns less information than the Debug

model.

For faster emulation without capturing this hardware debug information, select Optimized. As an
example to debug system hang issues, use the Debug mode and look at the state of different
signals in the Waveform viewer within the Vivado XSim simulator. Alternatively, if Debug is to be
done purely on the application software, you can use the Optimized mode.

UG1282 (v2018.2) July 2, 2018
SDSoC Debugging Guide

www.Xilinx.com

l Send Feedback I 27

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=27

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Running the Build

After specifying the Generate emulation model option, use the Build (‘%) command to compile
the system for emulation.

The Build process can take some time, depending on your application code, the size of your
hardware functions, and the various options you have selected. To compile the hardware
functions, the tool stack includes SDx, Vivado HLS, and the Vivado Design Suite.

Invoking the System Emulator

After building the emulation target, you can invoke the system emulator using the Xilinx— Start/
Stop Emulator menu command. Alternatively, you can also select the application in the Assistant
panel, right-click and from the context menu select Start/Stop Emulator.

R LTS

= s @ Settings
& Debug Duplicate...
=
[& maincpp ~ Add Hardware Function..
% projectsdx % Build
Clean
Terminate

== Assistant &2
& Start/Stop Emulator h

~ . Debug [Emu O Run 5
g reconvergi {; Debug 5
= Data Moti

Show Console

=l Compilatig = Show Guidance

. < Release [Har Open in Project Explorer
~ 7 too_large_copy
« & Debug [Emul # Delete
e too_large_copy [C/C++]
= Data Motion Network Report [29 May 2018 14:28]
=] Compilation Log [29 May 2018 14:36]
4 Release [Hardware]

When the Start/Stop Emulator dialog box opens, the emulation mode is specified.

¢ |f the emulation mode is Debug, you can choose to run the emulation with or without
waveforms.

¢ [f the emulation mode is Optimized, the Show waveforms checkbox is disabled, and cannot be
changed.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I)8

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=28

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

> |
| Start/Stop Emulator
@ The SDSoC Emulator feature is in Beta for Windows host OS =
I
Project: too_large_copy ~
Configuration: Debug ~

| Show Waveform (Programmable Logic only)
| Note: Run simulation on Xsim GUI to start the Qemu

|
| Emulator Running Status: Mot Running
I
I

Start Stop Close

The Start/Stop Emulator dialog box displays the Project name, the Build Configuration, and has
the Show Waveform option.

Disabling the Show Waveform option lets you run emulation with the output directed solely at
the Emulation Console view, which shows all system messages including the results of any print
statements in the source code. Some of these statements might include the values transferred to
and from the hardware functions, or a statement that the application has completed successfully,
which would verify that the source code running on the PS and the compiled hardware functions
running in the PL are functionally correct.

Enabling the Show Waveform option provides the same functionality in the Console window,
plus the behavioral simulation of the RTL, with a waveform window. The RTL waveform window
allows you to see the value of any signal in the hardware functions over time. When using Show
Waveform, you must manually add signals to the waveform window before starting the
emulation.

1. Use the Scopes pane to navigate the design hierarchy.

2. Select the signals to monitor in the Object pane, and right-click to add the signals to the
waveform pane.

3. Click the Run All toolbar button to start updates to the waveform window.

For more information about working with the Vivado® simulator waveform window, refer to the
Vivado Design Suite User Guide: Logic Simulation (UG900).

Note: Running with RTL waveforms results in a slower run time, but enables detailed analysis into the
operation of the hardware functions.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 29

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=29

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

O TIP: You can also start the system emulation by selecting the active project in the Project Explorer view
and right-clicking to select the Run As — Launch on Emulator menu command, or the Debug As —
Launch on Emulator menu command. Launching the emulator from the Debug As menu causes the
perspective change to the debug perspective to arrange the windows and views to facilitate debugging
the project. See Working with SDx in the SDSoC Environment User Guide (UG1027) for more
information on changing perspectives.

Viewing Emulation Output

After you invoke the system emulator, you see the program output in the console tab, and if the
Show Waveform option was selected, Vivado® IDE is launched with the simulator running. Add
waveforms to the Waveforms window as desired. Start simulation by clicking the Run All button.

¢ \Vivado 20182

File Edit Tools Repors Window Layout View Run Help
= & 4« » »r

Fl

SIMULATION - Behavioral Simulation - Functional - sim_1 - zc702_wrappe Run All (E3)

To launch a debug session with the emulator running, you can right-click on the application and
from the context menu select Debug As — Launch on Emulator (SDx Application Debugger).

This brings up the Confirm Perspective Switch dialog box. Click Yes to switch to the Debug
perspective.

| #=

'9' This kind of launch is associated with the Debug perspective.

This Debug perspective is designed 1o support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

i Do you want to open this perspective now?

| [C]Remember my decision

The application is launched in the Debug perspective and the program execution is stopped at
the main function. To resume the execution of the application code, click Resume.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 30

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1027-sdsoc-user-guide.pdf;a=xWorkingWithSdx
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=30

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

= Features - Debug - emulation_project/Debug/_sds/swstubs/main.cpp - Xilinx SDx
File Edit Source Refactor Mavigate Search Project Run Xilink Window Help
is B A O

=

;IJv |®7ﬁ7_n1{,§\@\|ﬂp‘ P T

% Debug 2 Resume (F8)
~ & Debugger_emulation_project(Emulation) (QEMU)
~ &% GdbClient (localhost:1137)
~ &2 pl
~ g% CPU#0 /cpu@0 (Breakpoint: main)
= 0x00100df0 main(): main.cpp, line 124
0x0010ce74 _start(): xil-crt0.5, line 142

This starts execution of the application code. The output of the application code can be seen in
the Emulation Console as shown below.

®=Variah.. % Break.. ! Regist.. EMXSCT.. B Emula.. & 2 Comm.. % Memo.. —{Platfo.. =iModules ~— O

QEMII Process
Starting QEMU

— Press <Ctrl-a h> for help
gemu—system—aarchéd.exe: 1

nfo: QEMU waiting for connection on: disconnected:tcp:127.0.0.1:8950,server

Waiting for QEMU to start. QEMU started!
Starting PL simulation

Testing 1 iterations of 32x32 floating point mmult...
TEST PASSED

<

gemuf

You can see the status of different signals in the Vivado Waveform window. You also see any
appropriate response in the hardware functions in the RTL waveform. During any pause in the
execution of the code, the RTL waveform window continues to execute and update, just like an
FPGA running on the board.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com

SDSoC Debugging Guide | Send Feedback | 31

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=31

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Untitled 1°

Q W @ a X « M + o

b i 404000

o adi_ic_psT_M_AX

W ax

You can stop the emulation at any time using the menu option Xilinx — Start/Stop Emulator and
selecting Stop.

O TIP: For an example project to demonstrate emulation, create a new SDx™ project using the Emulation
Example template. The README . t xt file in the project has a step-by-step guide for doing emulation
on both the SDx GUI and the command line.

Running System Emulation from the Command Line

You can create a design outside of the SDx™ IDE in a general command-line flow, using individual
SDx commands to build and compile the project, or with a Makefile flow. In the following sample
script, the TARGET flag defines that the compilation should be done for emulation.

FPGA Board Platform (Default ~ zcul02)
PLATFORM := zculO2

Run Target:

hw - Compile for hardware
emu - Compile for emulation (Default)
TARGET := emu

The emulation mode, as shown in the sample script below, can be specified with one of two
options:

e debug: Captures waveform data from the PL hardware emulation for viewing and debugging.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide | Send Feedback I 32

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=32

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

e optimized: Provides faster emulation without capturing hardware debug information.

Target OS:

linux (Default), standalone

TARGET_OS := linux

Emulation Mode:

debug - Include debug data

optimized - Exclude debug data (Default)
EMU_MODE := optimized

Type make to build the program at the command prompt.

If you want to view the waveform in the simulator, change directory to the level where you have
the _sds directory, then type sdsoc_emulator -graphic-xsim. This startsthe Vivado®
Simulator, as shown below.

emulation\emulation_proje »sdsoc_emulator -graphic-xsim

system-aarchGd.exe: info: QEMU waiting for comnection on: ¢

ing point mmult...

Hardware Execution Features Available to
All Platforms

Although system emulation is only available for application projects running on Xilinx provided
SDSoC™ base platforms, the hardware execution flow is available to run on any platform that is
the target of an SDSoC project. The hardware execution flow is simply the embedded processor
operating system, the application code, and the hardware functions running in concert, as
designed, on the hardware platform. The types of debugging you can perform on the hardware
include the following:

1. Full software debug using the Xilinx® System Debugger
2. Hardware-Software co-debug using the Xilinx System Debugger

Please note that, hardware debug includes instrumenting the hardware for analyzing signals in
the Vivado® Hardware Manager. The application needs to be built with special instructions to
instrument the hardware for this.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide | Send Feedback I 33

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=33

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Hardware Debugging in SDSoC Using ChipScope

After the final system image is generated and executed on the SDSoC™ platform, the entire
system including the embedded processor OS, the application code, and the accelerated
hardware functions, can be validated to be executing correctly on the actual hardware and any
necessary debug activity can be performed.

This debugging step could reveal issues around connecting to the target platform, booting the
processor, programming the hardware with the system image, problems with interactions
between the application code and the hardware functions in the form of protocol violations, and
validating multiple hardware functions with the application code. Finally this step could also
reveal system performance metrics that could shift your focus from debug to performance
tuning.

The SDx™ tool provides the capability to instrument the hardware to analyze transactions on the
interfaces of the hardware accelerators and adapters. This provides users the ability to debug the
hardware portion of the design. The following section illustrates this capability.

Using --dk to Enable Debugging the Accelerated Function

Visibility into a running design is crucial for debugging difficult situations like application hangs.
The System ILA debug core provides transaction level visibility into an accelerated kernel or
function running on hardware. AXI traffic of interest can also be captured and viewed using the
System ILA core.

The ILA core can be instantiated in the overall hardware of an existing SDSoC™ design, to enable
debugging features within that design, or can be inserted automatically by the compiler. The
SDSCC compiler, also referred to as sds+ +, provides the - -dk switch to attach System ILA cores
at the interfaces to the hardware functions for debugging and performance monitoring purposes.
Use the - -dk option to enable ILA IP core insertion:

--dk arg <[protocollchipscopell
list_ports]:<compute_unit_name>:<interface_name>>

The following is an example of the - -dk option in use:

sds++ -c --dk chipscope:vadd_cuO:s_axi_control --dk
chipscope:vadd_cu0:m_axi_gmem

A sample makefile to insert debug cores is shown below.

APPSOURCES = main.cpp mmult.cpp madd.cpp
EXECUTABLE = mmultadd.elf

PLATFORM = zc702

CLKID =

DMCLKID =

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 34

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=34

iv Xl Ll NX Chapter 2: SDSoC Debug Features
A ®

SDSFLAGS = -sds-pf ${PLATFORM} ${DMCLKID} \
-sds-hw mmult mmult.cpp ${CLKID} -sds-end \
-sds-hw madd madd.cpp ${CLKID} -sds-end \
-debug-port mmult:A \

-debug-port madd:C \
--dk chipscope:madd_1:A \
--dk chipscope:madd_1l_if:ap_ctrl

CC = sds++ ${SDSFLAGS}

CFLAGS = -03 -c

CFLAGS += -MMD -MP -MF'$(@:%.0=%.d)"
LFLAGS = -03

OBJECTS := $(APPSOURCES:.cpp=.0)
DEPS := $(OBJECTS:.o=.d)

.PHONY: all clean ultraclean
all: ${EXECUTABLE}

${EXECUTABLE}: ${OBJECTS}
${CC} ${LFLAGS} $~» -0 %@

-include ${DEPS}

%.0: %.Ccpp
${CC} ${CFLAGS} $» -o $@

clean:
${RM} ${EXECUTABLE} ${OBJECTS} ${DEPS}

ultraclean: clean
${RM} ${EXECUTABLE}.bit
${RM} -rf _sds sd_card

The -debug-port option specifies a function name and argument name. The lower level - -dk
option specifies the Tcl file used to recreate the block design instance and port name. For
example:

e -debug-port mmult:Aisequivalentto --dk chipscope:mmult_1:A,butthe sds++
command figures out what the instance and port names are in the Tcl file used to recreate the
block design. -debug-port can only be used to insert the System ILA for accelerators.

® —_xp param:compiler.userPostSysLinkTcl=<user_tcl_file>, where
<user_tcl_file> contains IP integrator Tcl commands for advanced users who need to
perform post-processing of the System ILA in the block diagram after system linking and
before synthesis.

e - _dk can be used to insert the System ILA for accelerator and adapter ports. You need to use
this option to observe the adapter ports. Once the design is built, you can debug the design
using the Hardware Manager as described in Vivado Design Suite User Guide: Programming and
Debugging (UG908).

If working in the SDSoC GUI environment, the above mentioned flags can be added in the build
settings as shown below.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 35

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=35

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

1. Right-click on an application project and from the context menu choose, C/C++ Build
Settings.

2. Inthe Properties for <application_name> dialog box, select SDS++ Linker = Miscellaneous.
In the Linker Flags field, add the debug flags as needed.

Figure 8: Properties dialog box for application

type filter text Settings - o
Resource
A
Builders
w CfCe+ Build Configuration; Debug [Active] | Manage Configurations..
Build Variables
Erwircnment
Lobming W Tool Settings Wl Devices 5 Build Steps Build Artifact d Binary Parsars @ Error Parsers
Settings o ~ I8 SOSCC Compiler Linkes Flags | -debug-part mmultd, -debug-port madd:C --dk chipscopesmadd_1:A --dk chipscopemadd_1_itap_ctrl
Toal Chain Editor & Symiols o = CxLinker loptionD
cfc_? Gg.m_u'd 74 Lhear 0|].IOII‘| -ALinker .c:,allr‘.rl_-_l O"
J = Warnings I
Proj AT
roject Referances (& Optimization
urt)’| {Tas
Run/Debug Settings & Debugging
& Profiling
¢ Directornies

(& Miscellaneous
Inferred Optiors
&% Software Platform
& Processor Options
~ B 505 « Compiler
& Symbaols

& Warnings

(& Optimization
(& Debugging
2 Profiling

- Oither Ohbjects £ %
| & Directories I
& Miscelianeous
« (3 Inferred Options
2 Software Platfarm
& Processor Options
w1 505+ + Lirkes
B Genera
(@ Libraries
(= Mizcellaneous
& Linker Script
« (& Inferred Options
& Sottware Platform
% Processor Options

B Cance!
Refer to the SDx Command and Utility Reference Guide (UG1279) for more information.

Analyzing the hardware design

Once the design has been built with appropriate ILA instances, you can open and analyze the
Vivado® design. To do this:

1. To confirm which signals are debuggable, navigate to the Debug/Release — _sds — p0—
vivado = prj folder in the Project Explorer window.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 36

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=36

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Figure 9: Opening the design in Vivado IDE

#* debug - 5Dx - mmult_add_debug_gui/project.sdx - Xilinx SDx
File Edit MNavigate Search Project Run Xilinx Window Help

Nl B/ v HBiFErOvit Gy

[t5 Project Explorer 2 Eg Y= 0

~ & mmult_add_debug_gui ~
% Binaries
B Archives
e Includes
~ = Debug
v (= _sds
= swstubs
= trace
= iprepo
~ = pl
= sd_card
v (= vivado
= output
~ = prj
= prj.cache
= prj.hw
= prj.ip_user_files
= prj.runs
= prj.sim
= prj.srcs
¢ prj.xpr
=l vivado_pid10752.str)

2. Doubleclick prij. xpr. This opens the design in the Vivado IDE.
3. In Vivado IDE, click Open Block Design in the Flow Navigator under IP Integrator.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com

SDSoC Debugging Guide | Send Feedback | 37

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=37

iv Xl LI NX Chapter 2: SDSoC Debug Features
A ®

Figure 10: Opening the Block Design in Vivado IDE

¢ pr - [Cftutorials/2018.2/Features/debug/T

File Edit Flow Tools Report

F

L
i
Y

Flow Navigator
v PROJECT MANAGER
£+ Settings
Add Sources
Language Templates

F P Catalog

¥ IPINTEGRATOR

Create Block Design

Open Blocngesign

Generate Block Design

4. In the Designs window, look for the instances of system_ila_x.

Figure 11: Finding ILA Instances in the Design

Sources Desig x Signals | Board Plattorm, 2 _ 0O &
Q = 4 o
> ¥ proc_sys_reset 2 (Processor System Reset5.0 ~
> % proc_sys_reset 3 (Processor System Reset5.0

> ¥ ps7 (ZYNQT Processing System:5.5)

> ¥ sds_irg_const (Constant1.1)

> ¥ system_ila_0 (System ILA:1.1)

> ¥ system_ila_1 (System ILA1.1)

» ¥ xconcat_0 (Concat2.1) =

5. Selecting the ILA instance(s) in the Design window, highlights the instances in the block
design.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 38

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=38

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Figure 12: Highlighted Instances of ILA in the Block Design

Diagram < Address Editor . ? 0 &5

@ QR &K Q|Q s + F B A2 C | I O o

T R e
8 _anis #o 1 _achk e
5_aws Mo 1_sesdn
m axs o O aclc

m_axs_ fio O aresstn

" |
— +
- r = +
A —_

< b

6. Select the interface nets connnected to the ILA and ensure that they have been connected to
the interfaces specified in the SDx™ IDE.

Adding Debug IP to C-Callable IP

i} IMPORTANT!: This debug technique requires familiarity with the Vivado® Design Suite, and RTL
design.

You need to instantiate debug cores like the Integrated Logic Analyzer (ILA) or Virtual Input/
Output (VIO) into the RTL code of a C-Callable IP for debug purposes. From within the Vivado
Design Suite, edit the RTL kernel to instantiate an ILA IP customization, or a VIO IP, into the RTL
code - similar to using any other IP in the Vivado IDE. Refer to the Vivado Design Suite User
Guide: Programming and Debugging (UG908) to learn more about using the ILA or other debug
cores in the RTL Instantiation flow.

O TIP: The best time to add debug cores to your C-callable IP is when you create it. Refer to "Creating C-
Callable IP Libraries" in the SDSoC Environment User Guide (UG1027) for more information.

After the RTL kernel has been instrumented for debug with the appropriate debug cores, you can
analyze the hardware in the ChipScope tool as described in Vivado Design Suite User Guide:
Programming and Debugging (UG908).

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 39

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=39

iv Xl LI NX Chapter 2: SDSoC Debug Features
A ®

Debugging Designs using Vivado Hardware Manager

Once the SDx™ Application has been instrumented to insert debug cores, the next step is to
connect to the Vivado® Hardware Manager and look at Integrated Logic Analyzer (ILA) core
transactions. To connect to the target board using the Vivado Hardware Manager, perform the
following steps.

1. Launch the Vivado Design Suite.

2. Select Open Hardware Manager from the Tasks menu, as shown in the following figure.

VIVADO' &£ XILINX

HLt Edibars

Quick Start

Tasks

Manege P 9
Dpen Hardwins Mandgsr »
ilinx Tl Sore ¥

Learning Center

Dielmentation snd Tutarials 3
Dusick Take Videas >
Hcleage Motes Guilde

Alternatively, you can also launch Vivado, open the Vivado project, under
<appication_project_name>/Debug/_sds/p0/vivado/prj/prj.xpr andthen
from the Flow Navigator, click Program and Debug — Open Hardware Manager — Open
Target = Open New Target.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 40

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=40

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

v IMPLEMENTATION

P Runimplementation

) Tcl Console x Messages Serial VO Links Serig
> Open Implemented Design
Q == £ Il B E B
~ PROGRAM AND DEBUG INFO: [IP Flow 19-1700] Loaded user IP repc

INFO: [IP Flow 19-2313] Loaded Vivado IP re
open_project: Time (3): cpu = 00:01:09 ; el

i Generate Bitstream

~ Open Hardware Manager update compile order -fileset sources 1
ocpen_hw
Open Target
|
Program Dev] & Auto Connect

Add Confiaur Recent Targets »

Launch the Open New H! St ML R
[——

o

3. The Open New Hardware Target wizard opens. Click Next.

Open Hardware Target

' VIVADO’

ML Editions This wizard will guide you through connecting to a hardware target

To connect to a remote hardware target, provide the host name and IP port of the
remote machine on which the instance of a Vivado Hardware Server is running.

£ XILINX

==

4. In the Hardware Server Settings page connect to the correct target by clicking on the
Connect to pull-down menu and selecting either Remote Server or Local Server. In case you
select the Remote Server option, you will need to add a Host name and the correct Port
number. In this example, we have assumed that you are connected locally.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com

SDSoC Debugging Guide | Send Feedback I 41

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=41

iv XI LI NX Chapter 2: SDSoC Debug Features
A ®

¢ Open Mew Hardware Target

Hardware Server Settings

Select local or remote hardware server, then configure the host name and port settings. Use Local server if
the target is attached to the local machine; otherwise, use Remote server

Connectto: | Remote server (target is on remote machine) w |
| Local server (targetis on local machine) I}
Remote Serv ST e e
iRemcte semver (targetis on remote machine I
Hostname: o
Port: 3121 [defaultis 3121]

Click Next to launch and/or connect to the hw_server (port 3121) application on the remote machine ‘null’,

g

f",;\ E

Click Next.

5. The Select Hardware Target page opens which identifies the target(s) present on the board.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I

42

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=42

iv Xl LI NX Chapter 2: SDSoC Debug Features
A ®

| ' C JEr l.-.'u (=] ware "_;-:
| Select Hardware Target

Select a hardware target from the list of available targets, then set the appropriate JTAG clock (TCK) '
frequency. If you do not see the expected devices, decrease the frequency or select a different target.

Hardware Targets
Type Name JTAG Clock Frequency
B xilinx_tcf Digilenti210203342363A 15000000 »

Add Xilinx Virtual Cable (XVC)

Hardware Devices (for unknown devices, specify the Instruction Register (IR) length)

Name ID Code IR Le...
@ arm_dap_ 0 4BAD0477 4
@ xc7z020_1 03727093 6

| Hardware server. localhost3121

| o) |

Click Next.

6. The Open Hardware Target Summary page opens which summarizes the Server name, the
port to which it is connected to and also the correct target and the operating frequency.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 43

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=43

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Open Hardware Target Summary
’
VIVADO

@ Hardware Server Settings:
o Server. localhost 3121

@ Target Settings
o Target: xilinx_tciDigilent’2102033423634
o Frequency: 15000000

&2 XILINX

To connect to the hardware described above, click Finish

Click Finish.
7. The Hardware Manager window opens as shown below.
HARDAWARE MANAGER - locabhosisiline_iciDegle 2102032423034, Y
Hardwars » [W W W ila 7
R P > R 2 Waeorm - hw_ita_2 3
o tla + AR S RN TR T o
- O 2
Ui enl 2 102033453 Open g LA Sialus: e -
@ arm_dap_0 m 3
< @ a0 1 (3 Fregrammed f
KADC .
hw_ia_1 e
tw_ita_2 [
Hardware Device: Properiies
& wctoddn_1 o Samngs -t fa_7 | Skams - hw_ita_2 Trigger Setup - rw_Ba_2» Capture Satup - w_fia_2
Hame scTi2n_1 (LN I | +
Pat w7020 core stas @ e
1D oo 03727093 +
Capline stites- Bndow a1
Ganeral Whindow samgle 0 of 1028

8. The ChipScope tool can now be used to debug the interfaces where the Integrated Logic
Analyzer was connected to running on the SDSoC platform. Refer to the Vivado Design Suite
User Guide: Programming and Debugging (UG908) for more information on working with the
tool.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 44

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=44

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Hardwade - i how_ila_2
Q== xR b Wiavelonm - fee_fa_2
Hame Stalus .

. = gl + ¢ » BB A q -
§ mcamast Conneciss E

B sl oDHGenlFI02033423 . Opan S0 ILA Rk ke

Duasivhose

Pragrammed

Fw_fia_1 ! [L2]

Pow_B3_2 (702 Wevalen]

LA Core Propemes
ra_itg_2 - o
Hame: hm_ila_2
Coil 702 _Vspstem_ila_1mnstila_lis
Devica. @ aeToddn_1
H core cong_J

General | Fropert

Hardware/Software Event Tracing

Event tracing provides visibility into each phase of the hardware function execution, including
the software setup for the accelerators and data transfers, as well as the hardware execution of
the accelerators and data transfers. Tracing an application produces a log that records correlation
between events for a duration of time. The goal of tracing is to help debug execution by
observing what happened when, and how long events took.

Software event tracing automatically instruments the stub of the hardware function to capture
software control events associated with a hardware function call. The event types that are
recorded include the setup and initialization of the hardware accelerator, data transfers, and
hardware-software synchronization events.

Hardware event tracing of accelerators with data transfers over AXI4-Stream connections can
also be enabled through the use of the -t race option of the sdscc/sds++ compilers . When
the linker is invoked with the - trace option, it inserts hardware monitor IP cores into the RTL
implementation of the hardware function to track the accelerator start and stop, and the
duration of data transfers.

As with hardware debugging, event tracing requires you to connect the SDSoC platform to a host
computer as described in Connecting to the Hardware. To run event tracing, execute the
application using the SDSoC GUI from the host using a debug or release build configuration.

Hardware/Software System Runtime Operation

The SDSoC™ compilers implement hardware functions either by cross-compiling them into IP
using the Vivado® HLS tool, or by linking them as C-Callable IP as described in the SDSoC
Environment Platform Development Guide (UG1146).

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide | Send Feedback I 45

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=45

& XILINX

Chapter 2: SDSoC Debug Features

Each hardware function callsite is rewritten to call a stub function that manages the execution of
the hardware accelerator. The figure below shows an example of hardware function rewriting.
The original user code is shown on the left. The code section on the right shows the hardware
function calls rewritten with new function names.

Figure 13: Hardware Function Call Site Rewriting

int main(int argc, char* argyl[]) {

int main(int argc, char* argy[]) {

float *A, *B, *C, *D, tmpl: float *A, *B, *C, *D, tmpl:
init (A, B, C, D): init(A, B, C, D):

mmult (A, B, tmpl): _p0 mmult 0(R, B, tmpl):
madd (tmpl, C, D): _p0_madd_0(tmpl, C, D):

check (D) ;

check (D)

X16743-040516

The stub function initializes the hardware accelerator, initiates any required data transfers for the
function arguments, and then synchronizes hardware and software by waiting at an appropriate
point in the program for the accelerator and all associated data transfers to complete. If, for
example, the hardware function foo () is defined in foo . cpp, you can view the generated
rewritten code in _sds/swstubs/foo.cpp for the project build configuration. As an example,
the stub code below replaces a user function marked for hardware. This function starts the
accelerator, starts data transfers to and from the accelerator, and waits for those transfers to

complete.

void _pO_mmultO(float

*A

float *B, float *C) {

switch_to_next_partition(0);

int start_seql[3];

start_seq[0] = 0x00000f00;
start_seq[1] = 0x00010100;
start_seql[2] = 0x00020000;

cf_send_i(cmd_addr,start_seq,cmd_handle) ;

cf_wait(cmd_handle) ;
cf_send_i(A_addr,
cf_send_i(B_addr, B,
cf_receive_i(C_addr,
cf_wait (A_handle) ;
cf_wait(B_handle) ;
cf_wait(C_handle) ;

A, A_handle) ;

B_handle) ;
C, C_handle);

Event tracing provides visibility into each phase of the hardware function execution, including

the software setup for the accelerators and data transfers, as well as the hardware execution of
the accelerators and data transfers. For example, the stub code below is instrumented for trace.
Each command that starts the accelerator, starts a transfer, or waits for a transfer to complete is

instrumented.

void_pO0_mmult_O(float

*A

float *B, float *C) {

switch_to_next_partition(0);

int start_seql3];

start_seq[0] = 0x00000f00;
start_seq[1] = 0x00010100;
start_seq[2] = 0x00020000;

UG1282 (v2018.2) July 2, 2018
SDSoC Debugging Guide

www.Xilinx.com

l Send Feedback I

46

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=46

& XILINX

sds_trace (EVENT_START) ;

Chapter 2: SDSoC Debug Features

(
cf_send_i(cmd_addr,start_seq,cmd_handle) ;
(

sds_trace (EVENT_STOP) ;
sds_trace(EVENT_START) ;
cf_wait(cmd_handle) ;
sds_trace (EVENT_STOP) ;
sds_trace(EVENT_START) ;
cf_send_1i
sds_trace
sds_trace
cf_send_1i
sds_trace (EVENT_STOP) ;
sds_trace(EVENT_START) ;

EVENT_STOP) ;
EVENT_START) ;

A_addr, A, A_handle);

B_addr, B, B_handle);

cf_receive_i(C_addr, C, C_handle) ;

sds_trace(EVENT_STOP) ;
sds_trace(EVENT_START) ;
cf_wait(A_handle) ;
sds_trace(EVENT_STOP) ;
sds_trace(EVENT_START) ;
cf_wait(B_handle) ;
sds_trace(EVENT_STOP) ;
sds_trace(EVENT_START) ;
cf_wait(C_handle) ;
sds_trace(EVENT_STOP) ;

Software Tracing

Event tracing automatically instruments the stub function to capture software control events
associated with the implementation of a hardware function call. The event types include the

following.

e Accelerator set up and initiation

e Data transfer setup

e Hardware/software synchronization barriers (“wait for event”)

Each of these events is independently traced, and results in a single AXI-Lite write into the
programmable logic, where it receives a timestamp from the same global timer as hardware

events.

Hardware Tracing

The SDSoC™ Environment supports hardware event tracing of accelerators cross-compiled using
Vivado® HLS, and data transfers over AXI4-Stream connections. When sds + + is invoked with
the -t race option, it automatically inserts hardware monitor IP cores into the generated system

to log these event types:

e Accelerator start and stop, defined by ap_start and ap_done signals.

e Data transfer start and stop, defined by AXI4-Stream handshake and TLAST signals.

UG1282 (v2018.2) July 2, 2018
SDSoC Debugging Guide

www.Xilinx.com [Send Feedback] s

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=47

iv Xl I_l NX Chapter 2: SDSoC Debug Features
A ®

Each of these events is independently monitored and receives a timestamp from the same global
timer used for software events. If the hardware function explicitly declares an AXI4-Lite control
interface using the following pragma, it cannot be traced because its ap_start and ap_done
signals are not part of the IP interface:

ffpragma HLS interface s_axilite port=foo

These debug cores will use some hardware resources, less than 0.1% of the hardware resources
available on a ZC706 board.

The AXI4-Stream monitor core has two modes: basic and statistics. The basic mode does just the
start/stop trace event generation. The statistics mode enables an AXI4-Lite interface to two 32-
bit registers. The register at offset Ox0 presents the word count of the current, on-going transfer.
The register at offset Ox4 presents the word count of the previous transfer. As soon as a transfer
is complete, the current count is moved to the previous register. By default, the AXI4-Stream
core is configured in the basic mode.

In addition to the hardware trace monitor cores, the output trace event signals are combined by a
single integration core. This core has a parameterizeable number of ports (from 1-63), and can
thus support up to 63 individual monitor cores (either accelerator or AXI4-Stream). The resource
utilization of this core depends on the number of ports enabled, and thus the number of monitor
cores inserted.

On a ZC706 platform, this can use between roughly 0.1-1.0 percent of the available hardware
resources, and up to approximately 10% of the memories with the integration logic.

Implementation Flow

During the implementation flow, when tracing is enabled, tracing instrumentation is inserted into
the software code and hardware monitors are inserted into the hardware system automatically.
The hardware system (including the monitor cores) is then synthesized and implemented,
producing the bitstream. The software tracing is compiled into the regular user program.

Hardware and software traces are timestamped in hardware and collected into a single trace
stream that is buffered up in the programmable logic.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 48

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=48

& XILINX

Chapter 3

Debug Techniques

This chapter describes the different styles of debugging techniques applicable to SDSoC™
designs. It highlights different approaches for software-based debugging and hardware oriented
techniques. In the software based approaches, the user is not required to actually understand the
implementation of the design in the FPGA. However, this concept can only be extended to a
certain degree at which point, the user will need to perform a more hardware based detailed
analysis.

When debugging SDSoC applications, you can use the same methods and techniques as
applications used for debugging standard C/C++. Most SDSoC applications consist of specific
functions tagged for hardware acceleration and surrounded by standard C/C++ code.

When debugging an SDSoC application with a board attached to the debug Host machine, you
can right-click a project and select the Debug As — Launch on Hardware option to begin a debug
session.

Options different from the default settings can be set through the Debug As — Debug
Configurations selection. As the debug environment is initialized Xilinx recommends that users
switch to the Debug perspective when prompted by the SDx™ IDE. The debug perspective view
provides the ability to debug the standard C/C++ portions of the application, by single-stepping
code, setting and removing breakpoints, displaying variables, dumping registers, viewing memory,
and controlling the code flow with “run until” and “jump to” type debugging directives. Inputs and
outputs can be observed pre- and post- function call to determine correct behavior.

You can determine if a hardware accelerated application meets its real-time requirements by
placing debug statements to start and stop a counter just before and just after a hardware
accelerated function. The SDx environment provides the sds_clock_counter () function
which is typically used to calculate the elapsed time for a hardware accelerated function.

You can also perform debugging without a target board connected to the debug host by building
the SDx project for emulation. During emulation, you can control and observe the software and
data just as before through the debug perspective view, but you can also view the hardware
accelerated functions through a Vivado® simulator waveform viewer. You can observe
accelerator signaling for conditions such as Accelerator start, Accelerator done and monitor data
buses for inputs and outputs. Building a project for emulation also avoids a possibly long Vivado
implementation step to generate an FPGA bitstream.

See the SDSoC Environment Debugging Guide (UG1282) for information on using the interactive
debuggers in the SDx IDE.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 49

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1282-sdsoc-debugging-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=49

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

Debugging System Hangs and Runtime
Errors

Programs compiled using sds ++ can be debugged using the standard debuggers supplied with
the SDSoC™ environment or Vivado® SDK. Typical runtime errors are incorrect results,
premature program exits, and program “hangs.” The first two kinds of errors are familiar to C/C++
programmers, and can be debugged by stepping through the code using a debugger.

Note: Applications might hang when you are running on the board. Hangs commonly happen due to a
mismatch on data size between the producer and the consumer.

A program hang is a runtime error caused by specifying an incorrect amount of data to be
transferred across a streaming connection created using #pragma SDS data
access_pattern(A:SEQUENTIAL), by specifying a streaming interface in a synthesizeable
function within Vivado HLS, or by a C-Callable hardware function in a pre-built library that has
streaming hardware interfaces. A program hangs when the consumer of a stream is waiting for
more data from the producer but the producer has stopped sending data.

Consider the following code fragment that results in streaming input/output from a hardware
function.

ffpragma SDS data access_pattern(in_a:SEQENTIAL, out_b:SEQUENTIAL)

void fl(int in_a[20], int out_b[20]); // declaration
void fl(int in_al[20], int out_b[20]) { // definition
int 1i;
for (4=0; 41 < 19; 4di++) {
out_bli] = din_aldi];

}

Notice that the loop reads the in_a stream 19 times but the size of in_a[] is 20, so the caller
of £1 would wait forever (or hang) if it waited for £1 to consume all the data that was streamed
to it. Similarly, the caller would wait forever if it waited for £1 to send 20 int values because f1
sends only 19. Program errors that lead to such “hangs” can be detected by using system
emulation to review whether the data signals are static (review the associated protocol signals
TLAST, ap_ready, ap_done, TREADY, etc.) or by instrumenting the code to flag streaming
access errors such as non-sequential access or incorrect access counts within a function and
running in software. Streaming access issues are typically flagged as improper streaming

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 50

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=50

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

access warnings in the log file, and it is left to the user to determine if these are actual errors.
Running your application on the SDSoC emulator is a good way to gain visibility of data transfers
with a debugger. You will be able to see where in software the system is hanging (often within a
cf_wait () call), and can then inspect associated data transfers in the simulation waveform
view, which gives you access to signals on the hardware blocks associated with the data transfer.

As another example, consider the following code that results in streaming input/output from the
hardware function.

ffpragma SDS data access_pattern(in:SEQUENTIAL, out:SEQUENTIAL)
#pragma SDS data copy(in[O:large], out[0O:small])
void too_large_copy(int* in, int* out, int small, int large)

{
}

for(int i = 0; i < small; i++) {outl[di]l = dinl[il;}

int main()

{
int* temp_varl = new int[1024 * 1024];
int* temp_var2 = new int[1024 * 1024];

too_large_copy(temp_varl, temp_var2, 1024, 1024 * 1024); //hangs
because the input DMA continues to try to feed data to a halted HLS core

}

In this case, the DMA continues to try to send data to the hardware function, whereas the
hardware function is already done and is not accepting any data. This results in a system "hang".
To debug this type of issue, build the code for emulation on the base platform. Once the
application is compiled, start the emulator by selecting Xilinx — Start/Stop Emulator.
Alternatively, you can start the emulator from the Assistant window as shown below. Right-click
the Active build configuration for the application and select Start/Stop Emulator.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 61

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=51

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

R HILIUUES

= _sdx % Seti
b Settings..

= Debug)

Duplicate...
= SIC = P
[& maincpp ~ Add Hardware Function..

% projectsdx % Build
Clean
Terminate _

= Assistant 2 t
& Start/Stop Emulator h

~ . Debug [Emu O Run y
¢ TeCONVergl 45 Debug N
=! Data Moti
— c lati Show Console

P omp_|a|r =l Show Guidance
7 Release [Har

e Open in Project Explorer
~ 7 too_large_copy

« & Debug [Emul # Delete

% too_large_copy [C/C++]

= Data Motion Network Report [29 May 2018 14:28]
=l Compilation Log [29 May 2018 14:36]

A Release [Hardware]

In the Emulation dialog box ensure that the Show Waveform (Programmable Logic only)
checkbox is checked. This brings up the Vivado Simulator where the state of different interfaces
can be viewed in the Waveform window. To monitor the interfaces of the hardware function,
right-click on the function and select Add to Wave window.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide | Send Feedback | e

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=52

iv XI LI NX Chapter 3: Debug Techniques
A ®

¢ Vivado 2018.2
File Edit Tools Repords Window Layout View Run Help Q- Quick Access

= # I‘ b ", 10 | us W E

F

SIMULATION - Behavioral Simulation - Functional - sim_1-zc702_wrapper

Scope x Sources - b= Objects ? OO0 X
Qalz|e g||a o
Name Design Unit Name Value Data "
> B axis_dwc_dm_0_rx.. zc702_axis_dwc_dm_0_n 0_0 2 Ml ap_clk 0 Logic
> @ axis_dwc_dm_0_br.. zc702_axis_dwc_dm_0_tx_0_0 M ap_rst_n 0 Logic
> @ axis_ic_dm_0 2¢702_axis_ic_dm_0_0 M ap_start X Logic
> B dk_wiz_0 ZcT02_clk_wiz_0_0 ol ap_done 0 Logic
> @ dm_0 Zc702_dm_0_0(zc702_dm_0_0_ar. Wl ap_idle 0 Logic
> 8 proc_sys_reset_0 zc702_proc_sys_reset_0_0(zc702... #l ap_ready 0 Logic
> @ proc_sys_reset_1 Zc702_proc_sys_reset_1_0(zc702... > W in_r_douti31:0] 00000000 Array
> @ proc_sys_resel_2 2c702_proc_sys_reset_2_0(2c702... M in_r_empty_n 0 Logic
> 8 proc_sys_reset_3 2c702_proc_sys_reset_3_0(zc702... Wl in_r_read 0 Logic
8 ps7 zc702_ps7_0 > W out_r_din[31:0] 00000000 Array
> @ sds_irq_const zc702_sds_irg const 0 M out r full_n 1 Logic
> @ sgdma2axis_dm_0 zc702_sgdma2axis_dm_0_0 B out_r_write 0 Logic
» 1 too_large_copy_1 Zr7N? tnn larne cone 1 0 J > W small_r{31:0] 00000000 Array
> @ too_large_copy_1_if 2z Ad{joWave Window > W large_r[31:0] 00000000 Armay
> 8 xiconcat 0 z Logto Wave Database *
&8 giol ; Go to Source Code
3 ! GotoInstantiation Source Code : i

ToiConscls x [NAEREES Set Current Scope To Active

Q = = Il B HE

Export to Spreadsheet ..

This adds all the 1/O ports of the selected function to the Waveform window. Start the simulator
by clicking the Run All icon in the toolbar.

¢ Vivado 2018.2

File Edit Tools Repors Window Layout View Run Help Q- Quick Access

n‘ ﬂ' K l‘ ’h R'r! 10| us e z

SIMULATION - Behavioral Simulation - Functional - sim_1 - zc702_wrapper

Run All (F3)

Go back to SDx™ IDE and launch the application on the debugger. To do this, select the
application to be debugged, right-click and select Launch on Emulator (SDx Application
Debugger).

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I c3

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=53

& XILINX

Chapter 3: Debug Techniques

- al
[Includes Domain: standalone
& _sdx @ Settlr_1g|s... CPU: ps7_cortexad_0 Em
v & Debug = Duplicate... 0S: standalone (
v & sds ## Add Hardware Function...
= emulatic — Roc
v (& swstubs Clean Hardware Functions
& stand Terminate
[g cf stu MName Clock Frequency (MHz) Patr
B cf sty @ Start/Stop Emulator / reconverge_src 100.00 src/)
[main. @ Run >
B portir > Debug > % Debugger_too_large_copy(Emulation) £
W portir B Show Conscle % Debugger_too_small_copy(Emulation)
_ () Show Guidance a0 Launch on Hardware (SDx Application Debugger)
<~ Assistant Open in Praject Explorer 57 Launch on Emulator (SDx Application Debugger)
ar Trace Application (SDx Application Debugger) [’\‘?

v [reconvergence st % pelete

~ §. Debug [Emulation]
% reconverge_src [C/C++]

Debug Configurations...

= Data Motion Network Report [29 May 2018 16:40]
= Compilation Log [29 May 2018 16:50]

Release [Hardware]

On the Confirm Perspective Switch dialog box, click Yes. The Debug Perspective opens with the
application running on the hardware. The code execution stops at the main program entry.

=] ﬁ,.v.- Y, |] 2| 1 ..-éﬁ"q'.'." - - i« =
o7 Doty ¥ [E B Ervesdatin 2 S
~ b Datugge tou lege_topnEruiaton) IOER
& GdbClent (ocahostch137)
::vr:wm,r:mmwm:mm sl
= 0wa0100770 manik: maneps, Ine 37
= 0el000cbEe amantilai-an0s, lire 142 = Al a o
) by _.: for CT_R:I'.}.I'.IE'.. CEND atarzed!
BN ks i C:ﬂin-c-: Gl e W =
e L= G- ST R (R H R
o o subh
F gl oo fange_topry_ 1 _noaipnclinl
23 &0 fanges oy _hoadpneling, i,
3% woid _pd_too_lerge_copy_1_nommynclint * in, dnt * out, int seall, dnt leegel; . PRI orgR KU, | SEaTRCOL BT iet, It k)
32 int malnl) & maifd) il
| — femp_vard = i AnE (024 AT
int* temp_warl = nad int[1024 * 1022];
_pit_too_large_copy_1_nomsyns(temp_vecl, tesmp uard, 1098, TO24 * WILY; hangs because the in
‘ -
O Comnle 21 &) Tasks (550w Terminal 1] Probeis 0 Ecsoutatles = T e B Emulanon Corake
i lliers log
oed JC tefpdbelient -5 top: i1
’ Writahla Smart it 1:1
Click the Resume button on the toolbar to execute the application.
UG1282 (v2018.2) July 2, 2018 www.xilinx.com
. . Send Feedback
SDSoC Debugging Guide 54

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=54

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

#* UG1282 - Debug - too_large_copy/Debug/_sds/swstubs/main.cpp - Xilinx 5Dx

File Edit Source Refactor Mavigate Search Project Run Xilink Window Help
e

e |®"ﬁ'.n1¢§\9~|U% N3 e[Bt~ O~
45 Debug 52 | -~ Assistant [Project Resume (F8)

~ & Debugger_too_large_copy(Emulation) (QEMU)
~ &% GdbClient (localhost:1137)
~ &2 pl
~ g% CPU#0 fcpu@0 (Breakpoint: main)
= 0x00100770 main(): main.cpp, line 37
0x0010c05c _start(): xil-crt0.5, line 142

Notice that the application is now "stuck". In other words a system hang has been encountered.

-

File Edit Source Refactor MNavigate Search Project Run
iu i | ®~ Qv @in|m 0@ | #

1+ Debug 2 | »~ Assistant (5 Project Explorer

w

¥+ Debugger_too_large_copy(Emulation) (QEMU)
~ £ GdbClient (localhost:1137)
v i p1

@ CPU#0 /cpu@0 (Running)

To determine why the system has hung up, go back to Vivado Design Suite. Look at the state of
the ap_done, ap_start, ap_idle and ap_ready signals for the function. The state of these signals
indicate that a transaction was started at the instance when the ap_start signal went high,

followed by the transaction ending when the ap_done signal went low. The ap_ready and ap_idle
signals likewise indicate the state of the function.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com

SDSoC Debugging Guide | Send Feedback | -

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=55

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

Eilg Edit Tools Reports. Window Layout View Run Help
=, & ¥ I » & 10/ us v X
SIMULATION - Behavioral Simulation - Functional - sim_1 - zc702_wrapper
Unfithed 1°

Q MW @ @ 3 o M M = % o

1, 705 850000 us

Analyzing the state of DMA at the same point of time, you will notice that while the hardware
function is finished accepting data, the DMA is still writing to it, as indicated by the
MOO_AXIS_tready and the MOO_AXIS_tvalid signals.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide | Send Feedback I c6

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=56

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

File Edit Tools Repaoris Window Layout View Run Help

= o ¥ 4 » r 10 us v

[l+

SIMULATION - Behavioral Simulation - Functional - sim_1 - zc702_wrapper

Untitled 1*

Q W @ g i =

1 705 850000 us

= 1,700 Js 1,720 ug

Now that you know the cause of the system hang, you can go back to the hardware function
code and fix any outstanding issues.

There are other situations where a system hang can occur as listed below:

1. If you can Ctrl+C out of the application, there was probably not enough data from the
accelerator. The Arm® is expecting more data than the accelerator is sending. Review
latencies if there is more than one path from a producer to a consumer. Designs where there
are multiple paths with equal latencies between two accelerators (A -> B ... -> Z while there is
also A -> Z Direct) need to be fixed at the design level equalizing the branches.

2. If Ctrl+C does not work, but you can ping or ssh into the board there is not enough data in
a Scatter Gather DMA (SGDMA) operation. Review data movers (copy or zero-copy) and
access pattern.

3. If you can not ping the board and it has hard locked, only coming back to life after a power
cycle, common causes are interaction between the following:

a. The SDSoC design and IP on the platform. Debug with ChipScope and peeking and
poking registers.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide | Send Feedback I -

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=57

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

b. The SDSoC design and C-Callable IP libraries. Debug with ChipScope and peeking and
poking of registers.

c. The RTL or the SW driver generated in the SDSoC flow. If you have enough Vivado
Design Suite or C driver experience you might be able to debug this; otherwise contact
the forums.

The following list shows other sources of run-time errors:

e Improper placement of wait () statements could result in:
Software reading invalid data before a hardware accelerator has written the correct value.

A blocking wait () being called before a related accelerator is started, resulting in a system
hang.

¢ Inconsistent use of memory consistency #pragma SDS data mem_attribute can resultin

incorrect results.

Unexpected Data Values

When the application is running, it is possible to get unexpected data. The hardware function
may not be returning the expected data, or it may be returning expected data at the wrong time.
This can be caused by hardware and/or software issues.

If hardware is suspect, check data inputs to your board using ChipScope if needed.
If software is suspect:

1. Go back to software debug and confirm that your software is good.

2. If the software debug is good, you need to visually inspect the code. Two common causes for
unexpected data are from the use of the #SDS data or the #SDS zero copy pragmas.

a. If using #SDS data pragmas the tools trust what you write. Confirm that the data access
pattern int the code matches data access pattern specified by the pragma.

b. A mis-sized (normally too large) #SDS zero copy can pull invalid data from cache. This is
seen in hardware. Emulation is likely to pass as there is no cache controller in software.

Peeking and Poking IP Registers

The Xilinx® System Debugger tool (XSDB) is most useful for understanding what is going on with
IP blocks included with the platform or various C-callable IP blocks.

For details on XSBD see SDK Online Help (UG782)

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I cq

https://www.xilinx.com/html_docs/xilinx2018_2/SDK_Doc/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=58

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

/7Y CAUTION!: Trying to access an address that is not mapped reports a BUS ERROR; addresses that are
mapped but lack proper backing result in a system hang.

Event Tracing

This section describes how traces are collected and displayed in the SDSoC™ Environment.

Runtime Trace Collection

Software traces are inserted into the same storage path as the hardware traces and receive a
timestamp using the same timer/counter as hardware traces. This single trace data stream is
buffered in the hardware system and accessed over JTAG by the host PC.

In the SDSoC™ environment, traces are read back constantly as the program executes attempting
to empty the hardware buffer as quickly as possible and prevent buffer overflow. However, trace
data only displays when the application is finished.

Trace data is collected in real time when you are running on the hardware.

For information about connecting to the hardware, refer to Connecting to the Hardware.

Trace Visualization

The SDSoC™ environment GUI provides a graphical rendering of the hardware and software
trace stream. Each trace point in the user application is given a unique name, and its own axis/
swimlane on the timeline. In general, a trace point can create multiple trace events throughout
the execution of the application, for example, if the same block of code is executed in a loop or if
an accelerator is invoked more than once.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 59

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=59

iv Xl LI NX Chapter 3: Debug Techniques
A ®

Figure 14: Example Trace Visualization Highlighting the Different Types of Events

B2 Axi state View (SDSoC_AXI_Trace_Nov-09_11-08) £ | % mmultadd_sw & mmuit i= SDSoC_AX|_Trace_Nov-09_11-08 E | e % ol e =

= B
0.000 000 0.000 005 0.000 010 0.000 015 0.000 020 0.000 025 0.000 030 0.000 035 0.000 040 B
E1SDS0C_AXI_Trace_Nov-09_11-08 I
mmult_accel-cmdSend [] L]
mmult_accel-cmdWait | t]
mmult_accel:in_A-send L 1
mmult_accel:in_B-send .
mmult_accel:out_C-receive .
mmult_accel_0:in_A-wait]
mmuilt_accel_0:in_B-wait L
mmult_accel_0:out_C-wait
mmult_accel_0 L]
mmuilt_accel_0:in_A I
mmult_accel_0:in_B |
mmult_accel_0:out_C |
Legend | Software B Accelerator I Data Transfer
GI D]
X16913-050216
Each trace event has a few different attributes: name, type, start time, stop time, and duration.
This data is shown as a tool-tip when the curser hovers above one of the event rectangles in the
view.
Figure 15: Example Trace Visualization Highlighting the Detailed Information
Available for Each Event
EA AXI State View (SDSoC_AXI_Trace_Nov-09_11-08) £ | X arraycopy_zero [¢] arraycopy.cpp [¢] main.cpp [n] arraycopy.h i= SDSoC_AXI_Trace_Nov-09_11-08 = 0
E h BB ¢ L &S
0.000 000 « 0.000 005 0.000 010 0.000 015 0.000 020 0.000 025 0.000 030 0.000 035 0.000 040 A
B SDSoC_AXI_Trace_Nov-09_11-08 ‘
mmult_accel-cmdSend — 1 L]
mmult_accel-crmdWait) L]
mmult_accel:in_A-send I i
mmult_accel:in_B-send
mmult_accel‘out_C—recei.A. Name mmu\t_accel:ln_A—send
mmult_accel_0:in_A-wait | Type Software
mmult_accel_0:in_B-wait ! Start Time 0.000003790
mmult_accel_0:out_C-wait i Stop Time _0.000005650 -
mmult_accel_0 Duration__ 0.000001860 L
It 1_0:in_A 1 ——
:mzlt::le:o;:::s ‘ I Start, stop, and
mmult_accel_0:out_C : duration of event |
in (seconds)
C1NT | [*)
X16912-050216

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide | Send Feedback I 60

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=60

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

Figure 16: Example Trace Visualization Highlighting the Event Names and Correlation
to the User Program

Send command to . Timeline units are in
accelerator to start Wait for core to be seconds
started
B2 Ax1 State View (SDSoC_AXI_Trace_Nov-09711-08) 2 | % mmultadd_sw A mmult i= SDSoC_AX|_Trace_Nov-09_11-08 E e B ¢ HEe e =0
0,000 000 0.000 005 0.000 010 0.000 015 0.000 020 0.000 025 0.000 030 0.000 035 0.000 040

E1SDSoC_AXI 'ﬁq.ce Nov-0

9 11-0
& — / Start data transfer
mmult_accel-cdSend
mmult_accel-cmdWait / from PS

mmult_accel:in_A-send
mmult_accel:in_B-send
mmult_accel:out_C-receive
mimult_accel_0:in_A-wait
mmult_accel_0:in_B-wait:

Start data receive
from PS side

mmult_accel_0:out_C- wall
mmult_accel_0

mmult_accel_0:in_ I

mmult_accel_0:in_B

mmult_accel_0:out_ Wait for data I
transfers to complete
Accelerator active

| Data transfer active |

GI Dl

X16914-050216

Troubleshooting

1. Incremental build flow: The SDSoC™ Environment does not support any incremental build
flow using the trace feature. To ensure the correct build of your application and correct trace
collection, be sure to do a project clean first, followed by a build after making any changes to
your source code. Even if the source code you change does not relate to or impact any
function marked for hardware, you can see incorrect results.

2. Programming and bitstream: The trace functionality is a "one-shot" type of analysis. The timer
used for timestamping events is not started until the first event occurs and runs forever
afterwards. If you run your software application once after programming the bitstream, the
timer will be in an unknown state after your program is finished running. Running your
software for a second time will result in incorrect timestamps for events. Be sure to program
the bitstream first, followed by downloading your software application, each and every time
you run your application to take advantage of the trace feature. Your application will run
correctly a second time, but the trace data will not be correct. For Linux, you need to reboot
because the bitstream is loaded during boot time by U-Boot.

3. Buffering up traces: In the SDSoC Environment, traces are buffered up and read out in real-
time as the application executes (although at a slower speed than they are created on the
device), but are displayed after the application finishes in a post-processing fashion. This
relies on having enough buffer space to store traces until they can be read out by the host
PC. By default, there is enough buffer space for 1024 traces. After the buffer fills up,
subsequent traces that are produced are dropped and lost. An error condition is set when the
buffer overflows. Any traces created after the buffer overflows are not collected, and traces
just prior to the overflow might be displayed incorrectly.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 61

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=61

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

4. Errors: In the SDSoC Environment, traces are buffered up in hardware before being read out
over JTAG by the host PC. If traces are produced faster than they are consumed, a buffer
overflow event might occur. The trace infrastructure is cognizant of this and will set an error
flag that is detected during the collection on the host PC. After the error flag is parsed during
trace data collection, collection is halted and the trace data that was read successfully is
prepared for display. However, some data read successfully just prior to the buffer overflow
might appear incorrectly in the visualization.

After an overflow occurs, an error file is created in the <build_config>/_sds/trace
directory with the name in the following format: archive _DAY_MON_DD_HH_MM_SS_-
GMT_YEAR_ERROR. You must reprogram the device (reboot Linux, etc.) prior to running the
application and collecting trace data again. The only way to reset the trace hardware in the
design is with reprogramming.

Debugging with Software/Hardware Cross
Probing

Once an SDx™ application has been created and functions are marked for hardware acceleration,
you build the design with the appropriate settings. You then must connect to the target board
(see Connecting to the Hardware).

Setting Debug Configurations

To set up the debug configuration:

1. In the Project Explorer view, click the ELF (. e1£) file in the Debug folder in the project.

2. Inthe toolbar, click the Debug icon or use the Debug icon pull-down menu to select Debug
As — Launch on Hardware (SDx™ Application Debugger).

Alternatively, right-click the project and select Debug As — Launch on Hardware (SDx
Application Debugger). The Confirm Perspective Switch dialog box appears.

Ensure that the board is switched on before debugging the project. Click Yes to switch to the
debug perspective. You are now in the Debug Perspective of the SDx IDE.

Note that the debugger resets the system, programs and initializes the device, then breaks at the
main function. The source code is shown in the center panel, local variables in the top right
corner panel and the SDx log at the bottom right panel shows the Debug Configuration log.

Before you start running your application, connect a serial terminal to the board so you can see
the output from your program. As an example the following settings can be used:

Connection Type: Serial

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 62

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=62

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

Port: COM<n>
Baud Rate: 115200 baud

Running the Application

Click the Resume icon to run your application, and observe the output in the terminal window.
The source code window shows the _exit function, and the Terminal tab shows the output
from the application.

Tips for Debugging Performance

The SDSoC™ Environment provides some basic performance monitoring capabilities with the
following functions:

e sds_clock_counter (): Use this function to determine how much time different code
sections, such as the accelerated code and the non-accelerated code, take to execute.

e sds_clock_frequency (): This function returns the number of CPU cycles per second.

You can estimate the actual hardware acceleration time by looking at the latency numbers in the
Vivado® Design Suite HLS report files (_sds/vhls/../*.rpt)orin the GUl under Reports -
HLS Report. The latency of X accelerator clock cycles equals X * (processor_clock_freq/
accelerator_clock_freq)processor clock cycles.Compare this with the time spent
on the actual function call to determine the overhead of setup and data transfers.

For best performance improvement, the time required for executing the accelerated function
must be much smaller than the time required for executing the original software function. If this
is not true, try to run the accelerator at a higher frequency by selecting a different c1kid on the
sds++ command line. If that does not work, try to determine whether the data transfer
overhead is a significant part of the accelerated function execution time, and reduce the data
transfer overhead. Note that the default c1kid is 100 MHz for all platforms. More details about
the c1kid values for the given platform can be obtained by running sdscc -sds-pf-info

<platform name>.
If the data transfer overhead is large, the following changes might help:

e Move more code into the accelerated function so that the computation time increases, and
the ratio of computation to data transfer time is improved.

e Reduce the amount of data to be transferred by modifying the code or using pragmas to
transfer only the required data.

e Sequentialize the access pattern as observed from the accelerator code, as it is more efficient
to burst transfers than to make a series of unrelated random accesses.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 63

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=63

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

e Assure that data transfers make use of system ports that are appropriate for the cache-ability
of the data being transfered. Cache flushing can be an expensive procedure, and using
coherent ports to access coherent data, and noncoherent ports to access non-coherent ports
makes a big difference.

Use sds_alloc () instead of malloc, where possible. The memory that sds_alloc ()
issues is physically contiguous, and enables the use of datamovers that are faster to configure
that require physically contiguous memory. Also, pinning virtual pages, which is necessary
when transfering data issue by malloc () data, is very costly.

Troubleshooting Compile and Link Time
Errors

Typical compile/link time errors are indicated by error messages issued when running make. To
probe further, look at the log files and rpt filesin the _sds/reports subdirectory created by
the SDSoC™ Environment in the build directory. The most recently generated log file usually
indicates the cause of the error, such as a syntax error in the corresponding input file, or an error
generated by the tool chain while synthesizing accelerator hardware or the data motion network.

Some tips for dealing with SDSoC Environment specific errors follow.

Tool Errors Are Reported by Tools in the SDSoC Environment Chain

Try the following troubleshooting steps:

e Check whether the corresponding code adheres to the Coding Guidelines found in SDSoC
Environment Programmers Guide (UG1278).

e Check the syntax of pragmas.
e Check for typos in pragmas that might prevent them from being applied to the correct
function.

Vivado® Design Suite High-Level Synthesis (HLS) Cannot Meet Timing Requirement
Try the following troubleshooting steps:

e Select a slower clock frequency for the accelerator in the SDSoC IDE (or with the sdscc/sds
++ command line parameter).

¢ Modify the code structure to allow HLS to generate a faster implementation. See the
Improving Hardware Function Parallelism section in SDSoC Environment Profiling and
Optimization Guide (UG1235) for more information on how to do this.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 64

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=64

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

Vivado Tools Cannot Meet Timing

Try the following troubleshooting steps:

In the SDSoC IDE, select a slower clock frequency for the data motion network or accelerator,
or both (from the command line, use sdscc/sds++ command line parameters).

Provide an example/resource to help the user synthesize the HLS block to a higher clock
frequency so that the synthesis/implementation tools have a bigger margin.

Modify the C/C++ code passed to HLS, or add more HLS directives to make the HLS block go
faster.

Reduce the size of the design in case the resource usage (see the Vivado tools report in
_sds/p0/_vpl/ipi/*.log and other log files in the subdirectories there) exceeds 80%.
See the next item for ways to reduce the design size.

The Design Is Too Large to Fit

Try the following troubleshooting steps:

Reduce the number of accelerated functions.

Change the coding style for an accelerator function to produce a more compact accelerator.
You can reduce the amount of parallelism using the mechanisms described in the Improving
Hardware Function Parallelism section in SDSoC Environment Profiling and Optimization Guide
(UG1235).

Modify pragmas and coding styles (pipelining) that cause multiple instances of accelerators to
be created.

Use pragmas to select smaller data movers such as AXIFIFO instead of AXIDMA_SG.

Rewrite hardware functions to have fewer input and output parameters/arguments, especially
in cases where the inputs/outputs are continuous stream (sequential access array argument)
types that prevent sharing of data mover hardware.

Troubleshooting Performance Issues

The SDSoC™ environment provides some basic performance monitoring capabilities in the form
of the sds_clock_counter () function described earlier. Use this to determine how much
time different code sections take to execute, such as the accelerated code, and the non-
accelerated code.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 65

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=65

iv Xl I_l NX Chapter 3: Debug Techniques
A ®

Estimate the actual hardware acceleration time by looking at the latency numbers in the Vivado®
HLS report files (_sds/vhls/../*.rpt). In the SDSoC IDE Project Platform Details tab, you can
determine the CPU clock frequency, and in the Project Overview you can determine the clock
frequency for a hardware function. A latency of X accelerator clock cycles is equal to X *
(processor_clock_freq/accelerator_clock_freq) processor clock cycles. Compare
this with the time spent on the actual function call to determine the data transfer overhead.

For best performance improvement, the time required for executing the accelerated function
must be much smaller than the time required for executing the original software function. If this
is not true, try to run the accelerator at a higher frequency by selecting a different clkid on the
sdscc/sds++ command line. If that does not work, try to determine whether the data transfer
overhead is a significant part of the accelerated function execution time, and reduce the data
transfer overhead. Note that the default c1kid is 100 MHz for all platforms. More details about
the c1k1id values for the given platform can be obtained by running sdscc -sds-pf-info

<platform name>.

If the data transfer overhead is large, the following changes might help:

e Move more code into the accelerated function so that the computation time increases, and
the ratio of computation to data transfer time is improved.

e Reduce the amount of data to be transferred by modifying the code or using pragmas to
transfer only the required data.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 66

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=66

& XILINX

Appendix A

SDSoC Environment
Troubleshooting

There are several common types of issues you might encounter using the SDSoC™ Environment
flow.

Compile/link time errors can be the result of typical software syntax errors caught by software
compilers, or errors specific to the SDSoC Environment flow, such as the design being too
large to fit on the target platform.

Runtime errors can be the result of general software issues such as null-pointer access, or
SDSoC Environment-specific issues such as incorrect data being transferred to/from
accelerators.

Performance issues are related to the choice of the algorithms used for acceleration, the time
taken for transferring the data to/from the accelerator, and the actual speed at which the
accelerators and the data motion network operate.

Incorrect program behavior can be the result of logical errors in code that fails to implement
algorithmic intent.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 67

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=67

& XILINX

Appendix B

Additional Resources and Legal
Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design
Hubs

Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx Documentation
Navigator (DocNav):

e From the Vivado® IDE, select Help - Documentation and Tutorials.
o On Windows, select Start — All Programs — Xilinx Design Tools = DocNav.

e At the Linux command prompt, enter docnav.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 68

https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=68

iv Xl Ll NX Appendix B: Additional Resources and Legal Notices
A ®

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

¢ In the Xilinx Documentation Navigator, click the Design Hubs View tab.

e On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page on the
Xilinx website.

References

These documents provide supplemental material useful with this guide:

SDSoC Environments Release Notes, Installation, and Licensing Guide (UG1294)
SDSoC Environment User Guide (UG1027)
SDSoC Environment Getting Started Tutorial (UG1028)
SDSoC Environment Platform Creation Tutorial (UG1236)
SDSoC Environment Platform Development Guide (UG1146)
SDSoC Environment Profiling and Optimization Guide (UG1235)
SDx Command and Utility Reference Guide (UG1279)
SDSoC Environment Programmers Guide (UG1278)
SDSoC Environment Debugging Guide (UG1282)
. SDx Pragma Reference Guide (UG1253)
11. UltraFast Embedded Design Methodology Guide (UG1046)
12. Zynq-7000 SoC Software Developers Guide (UG821)
13. Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137)
14. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC User Guide (UG850)
15. ZCU102 Evaluation Board User Guide (UG1182)
16. Vivado Design Suite User Guide: High-Level Synthesis (UG902)
17. Vivado Design Suite: Creating and Packaging Custom IP (UG1118)

W o N o »n bk~ Db e

=
o

18. SDSoC Development Environment web page

19. Vivado® Design Suite Documentation

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 69

https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1294-sdsoc-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1027-sdsoc-user-guide.pdf
https://github.com/Xilinx/SDSoC-Tutorials/blob/master/getting-started-tutorial/README.md
https://github.com/Xilinx/SDSoC-Tutorials/tree/master/platform-creation-tutorial
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1282-sdsoc-debugging-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=zcu102;d=ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=69

iv Xl Ll NX Appendix B: Additional Resources and Legal Notices
A ®

Training Resources

1. SDSoC Development Environment and Methodology
2. Advanced SDSoC Development Environment and Methodology

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https:/
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https:/www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I 70

https://www.xilinx.com/training/courses/sdsoc-development-environment-method.html
https://www.xilinx.com/training/courses/advanced-sdsoc-development-environment-methodology.html
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=70

iv Xl Ll NX Appendix B: Additional Resources and Legal Notices
A ®

OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado,
Zyng, and other designated brands included herein are trademarks of Xilinx in the United States
and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by
permission by Khronos. All other trademarks are the property of their respective owners.

UG1282 (v2018.2) July 2, 2018 www.xilinx.com
SDSoC Debugging Guide l Send Feedback I -

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2018.2&docPage=71

	SDSoC Environment Debugging Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction to Debugging in SDSoC
	SDSoC Environment Overview
	Terminology
	Elements of SDSoC
	Execution Model of an SDSoC Application
	SDSoC Build Process

	SDSoC Debug Flow Overview
	System Emulation
	Event Tracing
	Hardware Execution Flow
	Connecting to the Hardware

	Ch. 2: SDSoC Debug Features
	Debug Tools Available in the SDx Environment
	Xilinx System Debugger (XSDB)
	Setting Debug Configurations
	Main Tab
	Application Tab
	Target Setup Tab
	Arguments Tab
	Environment Tab

	Target Connections
	Debugging Linux Applications in the SDSoC IDE
	Debugging Standalone/FreeRTOS Applications in the SDSoC IDE

	Xilinx Software Command Line Tool (XSCT)

	System Emulation
	Running System Emulation from the GUI
	Enabling System Emulation
	Invoking the System Emulator
	Viewing Emulation Output

	Running System Emulation from the Command Line

	Hardware Execution Features Available to All Platforms
	Hardware Debugging in SDSoC Using ChipScope
	Using --dk to Enable Debugging the Accelerated Function
	Analyzing the hardware design
	Adding Debug IP to C-Callable IP
	Debugging Designs using Vivado Hardware Manager

	Hardware/Software Event Tracing
	Hardware/Software System Runtime Operation
	Software Tracing
	Hardware Tracing
	Implementation Flow

	Ch. 3: Debug Techniques
	Debugging System Hangs and Runtime Errors
	Peeking and Poking IP Registers
	Event Tracing
	Runtime Trace Collection
	Trace Visualization
	Troubleshooting

	Debugging with Software/Hardware Cross Probing
	Setting Debug Configurations
	Running the Application

	Tips for Debugging Performance
	Troubleshooting Compile and Link Time Errors
	Troubleshooting Performance Issues

	Appx. A: SDSoC Environment Troubleshooting
	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

