

Chapter 25: Compxlib

Compxlib Device Suppor t
This program is compatible with the following device families:

• 7 series and Zynq™

• Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6

• Virtex®-4, Virtex-5, and Virtex-6

• CoolRunner™ XPLA3 and CoolRunner-II

• XC9500 and XC9500XL

Compxlib Syntax
To compile simulation libraries from the command line, type:

compxlib [options]

options can be any number of the Compxlib command line options listed in Compxlib
Options. Enter options in any order, preceded them with a dash (minus sign on the
keyboard) and separate them with spaces.

For example, the following command compiles all Xilinx® Verilog libraries for the
Virtex®-6 device family on the ModelSim SE simulator:

compxlib -s mti_se -arch virtex6 -l verilog

For a list of Compxlib options and syntax details, see Compxlib Options. in this chapter.

To view Compxlib help, type compxlib -help <value>

You can specify the value of a specific Compxlib option or device family to get help
information on. See the Compxlib Command Line Examples section of this chapter
for details.

Note For information on compiling a simulation library in Project Navigator, see
the ISE® Help, especially Compiling HDL Simulation Libraries. Various options are
available from the Process Properties dialog box in Project Navigator. Project Navigator
shows only the options that apply to your specific design flow. For example, for a
Virtex-6 project, it shows only the list of libraries required to simulate a Virtex-6 design.
To see the compilation results after the libraries are compiled, double-click View
Compilation Log in Project Navigator to open the compxlib.log file.

Command Line Tools User Guide
324 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 25: Compxlib

Compxlib Options
This section describes the Compxlib command line options.

• -64bit (perform 64-bit compilation)

• -arch (Device Family)

• -cfg (Create Configuration File)

• -dir (Output Directory)

• -e (Existing Directory)

• -exclude_superseded (Exclude Superseded EDK Libraries)

• -exclude_sublib (Exclude EDK Sub-Libraries)

• -f (Execute Commands File)

• -info (Print Precompiled Library Info)

• -l (Language)

• -lib (Specify Name of Library to Compile)

• -log (Log File)

• -p (Simulator Path)

• -s (Target Simulator)

• -source_lib (Source Libraries)

• -verbose (List Detailed Messages)

• -w (Overwrite Compiled Library)

-64bit (perf orm 64-bit compilation)
Use this option to run the Simulator Compilation in 64-bit mode.

Syntax
-64bit yes

-arch (Device Famil y)
Use this option to compile selected libraries to the specified device family.

Syntax
-arch { device_family |all}

If -arch is not specified, Compxlib exits with an error message without compiling the
libraries. Specifying “all” rather than a specific device family generates libraries for
all device families.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 325

Chapter 25: Compxlib

Allowed values for device_family are:
• acr2 (for Automotive CoolRunner™-II)
• aspartan3 (for Automotive Spartan®-3)
• aspartan3a (for Automotive Spartan-3A)
• aspartan3adsp (for Automotive Spartan-3A DSP)
• aspartan3e (for Automotive Spartan-3E)
• aspartan6 (for Automotive Spartan-6)
• kintex7 (for Kintex™-7)
• kintex7l (for Kintex-7 Lower Power)
• qrvirtex4 (for QPro™ Virtex®-4 Rad Tolerant)
• qvirtex4 (for QPro Virtex-4 Hi-Rel)
• qvirtex5 (for QPro Virtex-5 Hi-Rel)
• qspartan6 (for QPro Spartan-6 Hi-Rel)
• qvirtex6 (for QPro Virtex-6 Hi-Rel)
• spartan3 (for Spartan-3)
• spartan3a (for Spartan-3A)
• spartan3adsp (for Spartan-3A DSP)
• spartan3e (for Spartan-3E)
• spartan6 (for Spartan-6)
• virtex4 (for Virtex-4)
• virtex5 (for Virtex-5)
• virtex6 (for Virtex-6)
• virtex6l (for Virtex-6 Lower Power)
• virtex7 (for Virtex-7)
• virtex7l (for Virtex-7 Lower Power)
• xa9500xl (for Automotive XC9500XL)
• xbr (for CoolRunner-II)
• xc9500 (for XC9500)
• xc9500xl (for XC9500XL)
• xpla3 (for CoolRunner XPLA3)

-cfg (Create Configuration File)
Use this option to create a configuration file with default settings. By default, Compxlib
creates the compxlib.cfg file or optional <cfg_file> if it is not present in the
current directory.

Use the configuration file to pass runtime options to Compxlib while compiling the
libraries. For more information on the configuration file, see Specifying Run Time
Options in this chapter.

Syntax
-cfg [cfg_file]

Command Line Tools User Guide
326 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 25: Compxlib

-dir (Output Director y)
Use this option to specify the directory path where you want to compile the libraries. By
default, Compxlib compiles the libraries as shown in the following table.

Default Compxlib Output Directories
Operating
System Default Output Director y
Linux $XILINX/ language / target_simulator / version /{lin|lin64}

Windows %XILINX%\ language \ target_simulator \ version \{nt|nt64}

Syntax
-dir dir_path

-e (Existing Director y)
Specifies the directory that contains libraries previously compiled by Compxlib.

Syntax
-e existing_directory

existing_directory is the directory containing the libraries previously compiled by
Compxlib.

-exclude_super seded (Exclude Super seded EDK Libraries)
Tells Compxlib to exclude the superseded EDK libraries from compilation (for EDK
libraries only). Please see the Embedded System Tools Reference Guide (UG111) for more
information on superseded libraries.

Syntax
-exclude_superseded

-exclude_sub lib (Exclude EDK Sub-Libraries)
Tells Compxlib to exclude the sub-libraries defined in the EDK .pao file from
compilation (for EDK libraries only). Please see the Embedded System Tools Reference Guide
(UG111) for more information on which libraries are sub-libraries.

Syntax
-exclude_sublib

-f (Execute Commands File)
This option executes the command line arguments in the specified command_file.

Syntax
-f command_file

For more information on the -f option, see -f (Execute Commands File) in the
Introduction chapter.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 327

Chapter 25: Compxlib

-inf o (Print Precompiled Librar y Info)
Use this option to print the precompiled information of the libraries. Specify a directory
path with -info to print the information for that directory.

Syntax
-info dir_path

-l (Langua ge)
Use this option to specify the language from which the libraries will be compiled.

Syntax
-l {all|verilog|vhdl}

By default, Compxlib detects the language type from the -s (Target Simulator) option. If
the simulator supports both Verilog and VHDL, Compxlib:
• Sets the -l option to all.
• Compiles both Verilog and VHDL libraries.

If the simulator does not support both Verilog and VHDL, Compxlib:
• Detects the language type supported by the simulator
• Sets the -l value accordingly

If you specify -l , Compxlib compiles only the libraries for the language that you specify.

Note When the XILINX_EDK environment variable is set and EDK compilation is
selected, Compxlib ignores this option and compiles both VHDL and Verilog libraries.

-lib (Specify Name of Librar y to Compile)
Use this option to specify the name of the library to compile. If the -lib option is not
specified, or if you specify “all”, all of the libraries are compiled.

Syntax
-lib [library |all]

Valid values for library are:
• unisim (alias u)
• simprim (alias s)
• uni9000 (alias n)
• xilinxcorelib (alias c)
• coolrunner (alias r)
• edk (alias e)

For multiple libraries, separate -lib options with spaces. For example:

.. -lib unisim -lib simprim ..

Note If you select EDK libraries (-lib edk), all ISE® libraries will be compiled
because EDK libraries are dependent on UNISIM and SIMPRIM.

-log (Log File)
Specifies the log file for this command.

Command Line Tools User Guide
328 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 25: Compxlib

Syntax
-log log_file

log_file is the name of the log file.

-p (Simulator Path)
Use this option to specify the directory path where the simulator executables reside.
By default, Compxlib automatically searches for the path from the $PATHor %PATH%
environment variable. This option is required if the target simulator is not specified in
the $PATHor%PATH%environment variable or to override the path from the $PATHor
%Path%environment variable.

Syntax
-p dir_path

-s (Target Simulator)
Use this option to specify the simulator for which the libraries will be compiled.

If you do not specify -s , Compxlib exits without compiling the libraries.

Syntax
-s simulator

Valid simulator values are:
• mti_se

• mti_pe

• mti_de

• questa

• vcs_mx (Linux only)
• ncsim (Linux only)
• riviera

• active_hdl (Windows only)

-sour ce_lib (Sour ce Libraries)
Tells Compxlib to search the specified directory for library source files before searching
the default paths found in environment variable XILINX (for ISE® Design Suite) or
XILINX_EDK (for EDK).

Note You should not use this option unless explicitly instructed by Xilinx® Technical
Support

Syntax
-source_lib dir_path

dir_path is the name of the directory in which to start searching for library source files.

-verbose (List Detailed Messages)
Use this option for Compxlib to list detailed program execution messages in the log file.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 329

Chapter 25: Compxlib

Syntax
-verbose

-w (Overwrite Compiled Librar y)
Use this option to overwrite precompiled libraries. By default, Compxlib does not
overwrite precompiled libraries.

Syntax
-w

Compxlib Command Line Examples
This section shows command line examples for Compxlib.

Compiling Libraries as a System Administrator
System administrators compiling libraries using Compxlib should compile the libraries
in a default location that is accessible to all users.

The following example shows how to compile the libraries for ModelSim SE for all
devices, libraries, and languages:

compxlib -s mti_se -arch all

In this example, Compxlib compiles the libraries needed for simulation using ModelSim
SE 6.4b. For the location to which the libraries are compiled, see the following table.

ModelSim SE Libraries Locations
VHDL Verilog

Linux $XILINX/vhdl/mti_se/6.6d/lin $XILINX/verilog/mti_se/6.6d/lin

Windows %XILINX%\vhdl\mti_se\6.6d\nt or
%XILINX%\vhdl\mti_se\6.6d\nt64

%XILINX%\verilog\mti_se\6.6d\nt or
%XILINX%\verilog\mti_se\6.6d\nt64

Compiling Libraries as a User
When you run Compxlib as a user, you should compile the libraries on a per project basis.
If your project targets a single device, compile the libraries for that specific device only.

The following example shows how to compile UNISIM and SIMPRIM libraries for
NCSim (VHDL) for a design using a Virtex®-5 device:

compxlib -s ncsim -arch virtex5 -lib unisim -lib simprim -l vhdl
-dir ./

In this example, Compxlib compiles the libraries to the current working directory.

If the system administrator has compiled all of the libraries to the default location, each
individual user can map to these libraries as needed. Each user should map to the
libraries on a per project basis to minimize the need for unnecessary library mappings in
the project location.

The example below shows how to map to the pre-compiled UNISIM and XilinxCoreLib
libraries for ModelSim PE for a design using a Virtex-5 device:

compxlib -s mti_pe -arch virtex5 -lib unisim -lib xilinxcorelib

Command Line Tools User Guide
330 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 25: Compxlib

When mapping to a pre-compiled location, do not specify the -w option. If there are no
pre-compiled libraries in the default location, Compxlib starts to compile the libraries.

Additional Compxlib Examples
Task Command
Display the Compxlib help on the screen compxlib -h

Obtain help for a specific option compxlib -h <option>

Obtain help for all the available architectures compxlib -h arch

Compile all of the Verilog libraries for
a Virtex-5 device (UNISIM, SIMPRIM
and XilinxCoreLib) on the ModelSim SE
simulator and overwrite the results in
$XILINX/verilog/mti_se

compxlib -s mti_se -arch virtex5
-l verilog -w

Compile the Verilog UNISIM, Uni9000 and
SIMPRIM libraries for the ModelSim PE
simulator and save the results in the $MYAREA
directory

compxlib -s mti_pe -arch all -lib
uni9000 -lib simprim-l verilog
-dir $MYAREA

Compile the Verilog Virtex-5 device
XilinxCoreLib library for the Synopsys
VCS and VCS MX simulators and save
the results in the default directory,
$XILINX/verilog/vcs

compxlib -s vcs_mx -arch virtex5
-lib xilinxcorelib

Compile the Verilog CoolRunner™ device
library for the Synopsys VCS and VCS MX
simulators and save the results in the current
directory

compxlib -s vcs_mx -arch
coolrunner -lib -dir ./

Print the precompiled library
information for the libraries compiled
in %XILINX%\xilinxlibs

compxlib -info %XILINX%\xilinxlibs

Print the precompiled library information
for the libraries compiled in the $XILINX
directory for the ModelSim SE simulator

compxlib -info $XILINX/mti_se/

Create compxlib.cfg with default options compxlib -cfg

Specifying Runtime Options
Use the compxlib.cfg file to specify runtime options for Compxlib. By default,
Compxlib creates this file in the current directory. To automatically create this file
with its default settings, use the -cfg option. See -cfg (Create Configuration File) for
more information.

You can specify the following runtime options in the configuration file.

EXECUTE
EXECUTE: on|off

By default, the value is on.

If the value is on, Compxlib compiles the libraries.

If the value is off, Compxlib generates only the list of compilation commands in the
compxlib.log file, without executing them.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 331

Chapter 25: Compxlib

EXTRACT_LIB_FROM_ARCH
EXTRACT_LIB_FROM_ARCH: on|off

This option supports Early Access devices. Do not change this option.

LOCK_PRECOMPILED
LOCK_PRECOMPILED: on|off

By default, the value is off.

If the value is off, Compxlib compiles the dependent libraries automatically if they
are not precompiled.

If the value is on, Compxlib does not compile the precompiled libraries.

For example, if you want to compile the XilinxCoreLib Library, Compxlib looks for this
value to see if the dependent UNISIM libraries should be compiled.

LOG_CMD_TEMPLATE
LOG_CMD_TEMPLATE: on|off

By default, the value is off.

If the value is off, Compxlib does not print the compilation command line in the
compxlib.log file.

If the value is on, Compxlib prints the compilation commands in the compxlib.log file.

HIER_OUT_DIR
HIER_OUT_DIR: on|off

By default, the value is off.

If the value is off, Compxlib places all of the libraries in the directory that is specified
with the -dir switch.

If the value is on, Compxlib creates hierarchical output directories for the libraries for
each of the simulators.

PRECOMPILED_INFO
PRECOMPILED_INFO: on|off

By default, the value is on.

If the value is on, Compxlib prints the precompiled library information including the
date the library was compiled.

If the value is off, Compxlib does not print the precompiled library information.

BACKUP_SETUP_FILES
BACKUP_SETUP_FILES: on|off

By default, the value is on.

If the value is on, Compxlib creates a backup of the all the simulator specific
setup files (modelsim.ini for MTI, cds.lib and hdl.var for NCSim, and
synopsys_sim.setup for Synopsys VCS and VCS MX) that it wrote out in the
previous run.

Command Line Tools User Guide
332 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 25: Compxlib

If the value is off, Compxlib does not create a backup of the setup files.

FAST_COMPILE
FAST_COMPILE: on|off

By default, the value is on.

If the value is on, Compxlib uses advanced compilation techniques for faster library
compilation for select libraries.

If the value is off, Compxlib does not use the advanced compilation methods and reverts
to traditional methods for compilation.

ABORT_ON_ERROR
ABORT_ON_ERROR: on|off

By default, the value is off.

If the value is off, Compxlib does not error out if a compilation error occurs.

If the value is on, Compxlib errors out if a compilation error occurs.

ADD_COMPILATION_RESULTS_TO_LOG
ADD_COMPILATION_RESULTS_TO_LOG: on|off

By default, the value is on.

If the value is on, Compxlib writes to the log file with the name specified by -log .

If the value is off, Compxlib ignores -log .

USE_OUTPUT_DIR_ENV
USE_OUTPUT_DIR_ENV: empty| <NAME_OF_ENVIRONMENT_VARIABLE>

By default, the value is empty.

If the value is empty, Compxlib does not look for an environment variable for the output
directory. Instead, it uses the directory specified by -o .

If the value is <NAME_OF_ENV_VAR>, Compxlib looks on the system for an
environment variable with the name listed in this option, and compiles the libraries to
that folder. See the following example.

cfg file USE_OUTPUT_DIR_ENV:MY_LIBS

system setting setenv MY_LIBS /my_compiled_libs

compiles the libraries to the folder /my_compiled_libs

OPTION
OPTION

Simulator language command line options.

OPTION:Target_Simulator:Language:Command_Line_Options

By default, Compxlib picks the simulator compilation commands specified in the
Command_Line_Options .

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 333

Chapter 25: Compxlib

You can add or remove the options from Command_Line_Options depending on
the compilation requirements.

Sample Configuration File (Windo ws Version)
The following is a sample compxlib.cfg file generated with default settings:

#***
/build/xfndry/O.40/rtf/bin/lin/unwrapped/compxlib configuration file - compxlib.cfg
Fri Jan 7 14:04:06 2011
#
Important :-
All options/variables must start from first column
#
#***

#
RELEASE_VERSION:13.1
#
RELEASE_BUILD:O.40
#
set current simulator name
SIMULATOR_NAME:
#
set current language name
LANGUAGE_NAME:all
#
set compilation execution mode
EXECUTE:on
#
print compilation command template in log file
LOG_CMD_TEMPLATE:off
#
Hierarchical Output Directories
HIER_OUT_DIR:off
#
print Pre-Compiled library info
PRECOMPILED_INFO:on
#
create backup copy of setup files
BACKUP_SETUP_FILES:on
#
use enhanced compilation techniques for faster library compilation
(applicable to selected libraries only)
FAST_COMPILE:on
#
save compilation results to log file with the name specified with -log option
ADD_COMPILATION_RESULTS_TO_LOG:on
#
abort compilation process if errors are detected in the library
ABORT_ON_ERROR:off
#
compile library in the directory specified by the environment variable if the
-dir option is not specified
OUTPUT_DIR_ENV:
#
#///
Setup file name: ModelSim SE
SET:mti_se:MODELSIM=modelsim.ini
#
ModelSim SE options for VHDL Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vcom -work <library> <OPTION> <file_name>
#
OPTION:mti_se:vhdl:u:-source -93 -novopt -explicit
OPTION:mti_se:vhdl:s:-source -93 -novopt -explicit
OPTION:mti_se:vhdl:c:-source -93 -novopt -explicit
OPTION:mti_se:vhdl:r:-source -93 -novopt -explicit

Command Line Tools User Guide
334 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 25: Compxlib

OPTION:mti_se:vhdl:i:-source -93 -novopt -explicit
OPTION:mti_se:vhdl:e:-93 -novopt -quiet -explicit
#
ModelSim SE options for VERILOG Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vlog -work <library> <OPTION> <file_name>
#
OPTION:mti_se:verilog:u:-source -novopt
OPTION:mti_se:verilog:s:-source -novopt
OPTION:mti_se:verilog:n:-source -novopt
OPTION:mti_se:verilog:c:-source -novopt
OPTION:mti_se:verilog:r:-source -novopt
OPTION:mti_se:verilog:i:-source -novopt
OPTION:mti_se:verilog:e:-novopt -quiet
#
#///
Setup file name: ModelSim PE
SET:mti_pe:MODELSIM=modelsim.ini
#
ModelSim PE options for VHDL Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vcom -work <library> <OPTION> <file_name>
#
OPTION:mti_pe:vhdl:u:-source -93 -explicit
OPTION:mti_pe:vhdl:s:-source -93 -explicit
OPTION:mti_pe:vhdl:c:-source -93 -explicit
OPTION:mti_pe:vhdl:r:-source -93 -explicit
OPTION:mti_pe:vhdl:i:-source -93 -explicit
OPTION:mti_pe:vhdl:e:-93 -novopt -quiet -explicit
#
ModelSim PE options for VERILOG Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vlog -work <library> <OPTION> <file_name>
#
OPTION:mti_pe:verilog:u:-source
OPTION:mti_pe:verilog:s:-source
OPTION:mti_pe:verilog:n:-source
OPTION:mti_pe:verilog:c:-source
OPTION:mti_pe:verilog:r:-source
OPTION:mti_pe:verilog:i:-source
OPTION:mti_pe:verilog:e:-novopt -quiet
#
#///
Setup file name: ModelSim DE
SET:mti_de:MODELSIM=modelsim.ini
#
ModelSim DE options for VHDL Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vcom -work <library> <OPTION> <file_name>
#
OPTION:mti_de:vhdl:u:-source -93 -novopt -explicit
OPTION:mti_de:vhdl:s:-source -93 -novopt -explicit
OPTION:mti_de:vhdl:c:-source -93 -novopt -explicit
OPTION:mti_de:vhdl:r:-source -93 -novopt -explicit
OPTION:mti_de:vhdl:i:-source -93 -novopt -explicit
OPTION:mti_de:vhdl:e:-93 -novopt -quiet -explicit
#
ModelSim DE options for VERILOG Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 335

Chapter 25: Compxlib

r (coolrunner) i (secureip) e (edk)
vlog -work <library> <OPTION> <file_name>
#
OPTION:mti_de:verilog:u:-source -novopt
OPTION:mti_de:verilog:s:-source -novopt
OPTION:mti_de:verilog:n:-source -novopt
OPTION:mti_de:verilog:c:-source -novopt
OPTION:mti_de:verilog:r:-source -novopt
OPTION:mti_de:verilog:i:-source -novopt
OPTION:mti_de:verilog:e:-novopt -quiet
#
#///
Setup file name: QuestaSim
SET:questa:MODELSIM=modelsim.ini
#
QuestaSim options for VHDL Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vcom -work <library> <OPTION> <file_name>
#
OPTION:questa:vhdl:u:-source -93 -novopt -explicit
OPTION:questa:vhdl:s:-source -93 -novopt -explicit
OPTION:questa:vhdl:c:-source -93 -novopt -explicit
OPTION:questa:vhdl:r:-source -93 -novopt -explicit
OPTION:questa:vhdl:i:-source -93 -novopt -explicit
OPTION:questa:vhdl:e:-93 -novopt -quiet -explicit
#
QuestaSim options for VERILOG Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vlog -work <library> <OPTION> <file_name>
#
OPTION:questa:verilog:u:-source -novopt
OPTION:questa:verilog:s:-source -novopt
OPTION:questa:verilog:n:-source -novopt
OPTION:questa:verilog:c:-source -novopt
OPTION:questa:verilog:r:-source -novopt
OPTION:questa:verilog:i:-source -novopt
OPTION:questa:verilog:e:-novopt -quiet
#
#///
Setup file name: ncvhdl
SET:ncsim:CDS=cds.lib
SET:ncsim:HDL=hdl.var
#
ncvhdl options for VHDL Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
ncvhdl -work <library> <OPTION> <file_name>
#
OPTION:ncsim:vhdl:u:-MESSAGES -v93 -RELAX -NOLOG
OPTION:ncsim:vhdl:s:-MESSAGES -v93 -RELAX -NOLOG
OPTION:ncsim:vhdl:c:-MESSAGES -v93 -RELAX -NOLOG
OPTION:ncsim:vhdl:r:-MESSAGES -v93 -RELAX -NOLOG
OPTION:ncsim:vhdl:i:-MESSAGES -v93 -RELAX -NOLOG
OPTION:ncsim:vhdl:e:-MESSAGES -v93 -RELAX -NOLOG
#
ncvhdl options for VERILOG Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
ncvlog -work <library> <OPTION> <file_name>
#
OPTION:ncsim:verilog:u:-MESSAGES -NOLOG
OPTION:ncsim:verilog:s:-MESSAGES -NOLOG
OPTION:ncsim:verilog:n:-MESSAGES -NOLOG

Command Line Tools User Guide
336 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 25: Compxlib

OPTION:ncsim:verilog:c:-MESSAGES -NOLOG
OPTION:ncsim:verilog:r:-MESSAGES -NOLOG
OPTION:ncsim:verilog:i:-MESSAGES -NOLOG
OPTION:ncsim:verilog:e:-MESSAGES -NOLOG
#
#///
Setup file name: vlogan script version
SET:vcs_mx:SYNOPSYS_SIM=synopsys_sim.setup
#
vlogan script version options for VHDL Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vhdlan -work <library> <OPTION> <file_name>
#
OPTION:vcs_mx:vhdl:u:-nc
OPTION:vcs_mx:vhdl:s:-nc
OPTION:vcs_mx:vhdl:c:-nc
OPTION:vcs_mx:vhdl:r:-nc
OPTION:vcs_mx:vhdl:i:-nc
OPTION:vcs_mx:vhdl:e:-nc
#
vlogan script version options for VERILOG Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vlogan -work <library> <OPTION> <file_name>
#
OPTION:vcs_mx:verilog:u:+v2k -nc
OPTION:vcs_mx:verilog:s:+v2k -nc
OPTION:vcs_mx:verilog:n:+v2k -nc
OPTION:vcs_mx:verilog:c:+v2k -nc
OPTION:vcs_mx:verilog:r:+v2k -nc
OPTION:vcs_mx:verilog:i:+v2k -nc
OPTION:vcs_mx:verilog:e:+v2k -nc
#
#///
Setup file name: Aldec
SET:riviera:LIBRARY=library.cfg
#
Aldec options for VHDL Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vcom -work <library> <OPTION> <file_name>
#
OPTION:riviera:vhdl:u:-93
OPTION:riviera:vhdl:s:-93
OPTION:riviera:vhdl:c:-93
OPTION:riviera:vhdl:r:-93
OPTION:riviera:vhdl:i:-93
OPTION:riviera:vhdl:e:-93
#
Aldec options for VERILOG Libraries
Syntax:-
OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c (xilinxcorelib)
r (coolrunner) i (secureip) e (edk)
vlog -work <library> <OPTION> <file_name>
#
OPTION:riviera:verilog:u:-v2k5
OPTION:riviera:verilog:s:-v2k5
OPTION:riviera:verilog:n:-v2k5
OPTION:riviera:verilog:c:-v2k5
OPTION:riviera:verilog:r:-v2k5
OPTION:riviera:verilog:i:-v2k5
OPTION:riviera:verilog:e:-v2k5
#///
End

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 337

Command Line Tools User Guide
338 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 26

XWebTalk
This chapter describes the XWebTalk command line utility, which lets you enable or
disable WebTalk data collection.

WebTalk Overview
The WebTalk feature of ISE® Design Suite helps Xilinx® understand how its customers
use Xilinx FPGA devices, software, and Intellectual Property (IP). The information
collected and transmitted by WebTalk helps Xilinx improve the features most important
to customers as part of its continuing effort to provide products that meet your current
and future needs.

When enabled, WebTalk transmits information to Xilinx after a bitstream has been
generated using Project Navigator, PlanAhead™, Platform Studio, System Generator,
XFLOW, or the command line, and when iMPACT is closed.

The WebTalk install preference can be set during the ISE Design Suite installation
process. WebTalk user preferences can be set in ISE Design Suite, iMPACT, and
PlanAhead by editing user preferences. To set WebTalk user preferences, do one of
the following:
• In Project Navigator, select Edit > Preferences > WebTalk
• In iMPACT, select Edit > Preferences > iMPACT > WebTalk
• In PlanAhead™, select Tools > Options > General

XWebTalk lets you set both install and user preferences from the command line.

Note WebTalk is always enabled in WebPACK. WebTalk ignores user and install
preference when a bitstream is generated using the WebPACK license. If a design
is using a device contained in WebPACK and a WebPACK license is available, the
WebPACK license will always be used. To change this, see Answer Record 34746.

WebTalk Behavior for Bitstream Generation Flows
This table summarizes WebTalk behavior for data transmission back to Xilinx after bitstream
generation based on your ISE Design Suite license, WebTalk install settings and WebTalk user
preference settings.

Design Flow ISE Design
Suite License

WebTalk
Install
Preference

WebTalk User
Preference

WebTalk Data
Transmission
to Xilinx

WebPACK Ignored Ignored Yes (Send)

Enabled Enabled Yes (Send)

Enabled Disabled No (Do not send)

Bitstream
generation

Logic Edition

Disabled Ignored No (Do not send)

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 339

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=34746

Chapter 26: XWebTalk

WebTalk Behavior for iMPACT
This table summarizes WebTalk behavior for data transmission from iMPACT to Xilinx based on
your WebTalk install settings and WebTalk user preference settings. If enabled, iMPACT sends
usage statistics data using WebTalk at the end of every session (when iMPACT is closed).

Design Flow WebTalk Install
Preference

WebTalk User
Preference

WebTalk Data
Transmission to
Xilinx

Enabled Enabled Yes (Send)

Enabled Disabled No (Do not send)

iMPACT

Disabled Ignored No (Do not send)

XWebTalk Syntax
Following is the command line syntax for XWebTalk:

xwebtalk [options]

options can be any of the options listed in XWebTalk Options.

XWebTalk Options
This section describes the XWebTalk command line options, and includes the following:
• -user (User)
• -install (Install)
• -info (Information)

-user (User)
This option lets you turn WebTalk on or off on a per user basis.

Syntax
-user on|off

on turns WebTalk on for the current user.
off turns WebTalk off for the current user.

User settings are saved in the following location:
• Windows -%APPDATA%\Xilinx\Common\ version\webtalk where %APPDATA%

is C:\Documents and Settings\ user\Application Data

• Linux - /home/ user/.Xilinx/Common/ version/webtalk

Example
xwebtalk -user on

Enables WebTalk for the current user.

-install (Install)
This option lets you turn WebTalk on or off on a per-installation basis.

Command Line Tools User Guide
340 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 26: XWebTalk

Syntax
-install on|off

on turns WebTalk on for the installation.

off turns WebTalk off for the installation.

Install settings are saved in the following location:

• Windows -%XILINX%\data\reports\webtalksettings

• Linux - $XILINX/data/reports/webtalksettings

Note You will need administrator privileges to be able to write to the install location.

Example
xwebtalk -install on

Enables WebTalk for an installation

-inf o (Information)
This option lets you check the current status of WebTalk settings.

Syntax
-info

Example
xwebtalk -info

Lists the current WebTalk settings.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 341

Command Line Tools User Guide
342 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27

Tcl Reference
This chapter provides information on the Xilinx® Tcl command language.

Tcl Overview
Tool Command Language (Tcl) is an easy to use scripting language and an industry
standard popular in the electronic design automation (EDA) industry.

The Xilinx® software Tcl command language is designed to complement and extend
the ISE® graphical user interface (GUI). For new users and projects, the GUI provides
an easy interface to set up a project, perform initial implementations, explore available
options, set constraints, and visualize the design. Alternatively, for users who know
exactly what options and implementation steps they wish to perform, the Xilinx Tcl
commands provide a batch interface that makes it convenient to execute the same
script or steps repeatedly. Since the syntax of the Xilinx Tcl commands match the GUI
interaction as closely as possible, Xilinx Tcl commands allow an easy transition from
using the GUI to running the tools in script or batch mode.

Tcl Device Suppor t
Xilinx Tcl commands are available for use with the following device families:
• 7 series and Zynq™
• Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6
• Virtex®-4, Virtex-5, and Virtex-6
• CoolRunner™ XPLA3 and CoolRunner-II
• XC9500 and XC9500XL

The Xilinx Tcl Shell
To access the xtclsh from the command line, type xtclsh from the command prompt
to return the xtclsh prompt (%).

> xtclsh
%

Command line syntax is based on the Tcl command and corresponding subcommand
that you enter.

% tcl_command subcommand optional_arguments

tcl_command is the Tcl command name.
subcommand is the subcommand name for the Xilinx Tcl command.
optional_arguments are the arguments specific to each subcommand.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 343

Chapter 27: Tcl Reference

Example syntax for all Xilinx Tcl commands, subcommands, and their respective
arguments is included in the Tcl Commands for General Use and Tcl Commands for
Advanced Scripting sections in this chapter.

Accessing Help for Xilinx Tcl Commands
Use the help command to get detailed information on Xilinx-specific Tcl commands.
From the xtclsh prompt (%), type help for a list and brief description of Xilinx Tcl
commands. For help on a specific Tcl command, type the following:

% help <tcl_command>

You can also get information on a specific subcommand by typing the subcommand
name after the Tcl command. For example, type the following to get help on creating
a new ISE project:

% help project new

help is the command that calls the Tcl help information.

project specifies the Tcl command name.

new specifies the subcommand name about which you wish to obtain help.

Note The Tcl help command is case-sensitive. Typing HELPas opposed to help in the
xtclsh or Tcl Console panel will list available OS commands.

Tcl Fundamentals
Each Tcl command is a series of words, with the first word being the command name.
For Xilinx Tcl commands, the command name is either a noun (e.g., project) or a verb
(e.g., search). For commands that are nouns, the second word on the command line is
the verb (e.g., project open). This second word is called the subcommand.

Subsequent words on the command line are additional parameters to the command. For
Xilinx Tcl commands, required parameters are positional, whichmeans theymust always
be specified in an exact order and follow the subcommand. Optional parameters follow
the required parameters, can be specified in any order, and always have a flag that starts
with "-" to indicate the parameter name; for example, -instance <instance-name> .

Tcl is case sensitive. Xilinx® Tcl command names are always lower case. If the name
is two words, the words are joined with an underscore (_). Even though Tcl is case
sensitive, most design data (e.g., an instance name), property names, and property
values are case insensitive. To make it less burdensome to type at the command prompt,
unique prefixes are recognized when typing a subcommand, which means only typing
the first few letters of a command name is all that is required for it to be recognized.

Command Line Tools User Guide
344 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

To get the most from this Tcl reference, it is best to understand some standard Tcl
commands.

• set - Used to assign values to variables and properties. set takes 2 arguments:
the name of the variable followed by the argument to be assigned to that variable.
Since Tcl variables are "type-less", it is not necessary to declare a variable or its
type before using it.

% set fruit apple; # assigns the value "apple" to the variable
named "fruit"

• $ (dollar sign) -Used to substitute a variable’s value for its name. Using the previous
example, consider the variable’s name as well as its value:

% puts fruit; # this prints the word "fruit"

% puts $fruit; # this prints the value of the variable fruit:
the word "apple."

• [] (square brackets) - The result of one command can be substituted directly as
input into another command. Using the square brackets, you can nest commands,
because Tcl interprets everything between the brackets and substitutes its result.

• more substitution - Tcl provides several ways to delimit strings that contain spaces
or other special characters and to manage substitution. Double quotes (") allow
some special characters ([] and $) for substitution. Curly braces { } perform no
substitutions.

• Tcl and backslashes - The backslash (\) has a special meaning in Tcl, thus it
will not behave as you expect if you paste DOS style path names, which contain
backslashes, into Tcl commands. It is recommended that you specify all path names
using forward slashes within Tcl commands and scripts.

The real power of Tcl is unleashedwhen it is used for nested commands and for scripting.
The result of any command can be stored in a variable, and the variable (or the command
result substituted within square brackets) can be nested as input to other commands.

For more information about Tcl in general, please refer to Tcl documentation easily
available on the internet, for example: http://www.tcl.tk/doc/, which is the website for
the Tcl Developer Xchange. If you wish to review sample scripts made up of standard
Tcl commands, refer to "Sample Standard Tcl Scripts" within the Example Tcl Scripts
section at the end of this chapter. Further tutorials and examples are available at the Tcl
Developer Xchange: http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html.

Xilinx Namespace
All Xilinx® Tcl commands are part of the Tcl namespace xilinx:: . If another Tcl
package uses a command name that conflicts with a Xilinx-specific Tcl command name,
the Xilinx namespace must be used to access the command. For example, type the
following to create a new project using Xilinx-specific Tcl commands:

% xilinx::project new <project_name>

It is only necessary to specify the Xilinx namespace when you have more than one
namespace installed.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 345

http://www.tcl.tk/doc/
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

Chapter 27: Tcl Reference

Project and Process Proper ties
This section contains tables that list Project and Process Properties available as options
to the Tcl commands.

The first table below lists the project properties that apply to your project, independent
of any processes. The remaining tables list all of the process properties, which are
supported batch tool options grouped into separate tables for the software process
with which they are associated

Note In many cases, the properties listed in the following tables are dependent
properties. This means that a particular property setting may not be available unless a
different, related property has been set. If you try to set a property, yet it is not available,
a warning message will inform you that it is dependent on another property.

Project Proper ties
Project Proper ties

Proper ty Name Description
family The device family into which you will implement your

design. For allowed values, see the -arch option in the
PARTGen chapter of this guide.

device The device (within previously-specified device family) to
use for the project.

package The package (available for previously-specified device) to
use for the project.

speed The device speed grade.

"Top-Level Source Type"
or top_level_module_type

The source type of the top-level module in your design.
Choices are: HDL, EDIF, Schematic, and NGC/NGO.

"Synthesis Tool"
or synthesis_tool

The synthesis tool for ISE® Design Suite to use when
synthesizing your sources. The default is XST, but partner
synthesis tools are available if they are installed.

Simulator Specify the integrated simulator for the ISE Design Suite to
use (ISim), or specify from a larger selection of external
simulators as target for ISE Design Suite-generated
simulation netlists and files.

"Preferred Language" The HDL language that you wish the ISE Design Suite
to use when generating simulation netlists and other
intermediate files. If your synthesis tool and simulator only
support one language, that is your default.

Top Identify which source file is the top-level module in your
design hierarchy.

name Name of the project

"Use SmartGuide" Enables or disables SmartGuide™ functionality. Choices
are: TRUE or FALSE.

"SmartGuide Filename" If you wish to specify a different guide file (other than the
default previous placed and routed NCD), you may specify
the file with this property. The value must be a placed and
routed NCD file. This is a dependent property on the "Use
SmartGuide" property.

Command Line Tools User Guide
346 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Process Proper ties - Synthesiz e Process
The following table of XST Process Properties can be used with project set and
project get with -process "Synthesize - XST".

Synthesiz e - XST Process Proper ties
Note the values listed in this table are associated with xst processes when applied to
Virtex5 devices. In a few cases, values may differ for other devices.

Note the "command-line equivalent" column is intended not as an explanation of the
shell command-line syntax, but as a reference should you wish to refer to this equivalent
argument elsewhere in this guide.

Proper ty Name Type Allo wed Values in Tcl Default Value
XST Command-Line
Equiv alent

"Asynchronous to
Synchronous"

boolean TRUE, FALSE FALSE -async_to_sync

"Add I/O Buffers" boolean TRUE, FALSE TRUE -iobuf

"Automatic BRAM
Packing"

boolean TRUE, FALSE FALSE -auto_bram_packing

"BRAM Utilization
Ratio"

range –1 to 100 100 -bram_utilization_ratio

"Bus Delimiter" list <>,[],{},() <> -bus_delimiter

"Case
Implementation
Style"

list "None", "Full", "Parallel",
"Full-Parallel"

"None" -vlgcase

"Case" list "Maintain", "Lower",
"Upper"

"Maintain" -case

"Cores Search
Directories"

filenames -sd

"Cross Clock
Analysis"

boolean TRUE, FALSE FALSE -cross_clock_analysis

"Decoder
Extraction"
(S3/A/E/V4/V5 only)

boolean TRUE, FALSE TRUE -decoder_extract

"DSP Utilization
Ratio"
(S3ADSP/V4/
S6/V5/V6/7
series/Zynq only)

range –1 to 100 100 -dsp_utilization_ratio

"Equivalent Register
Removal"

boolean TRUE, FALSE TRUE -equivalent_register_
removal

"FSM Encoding
Algorithm"

list "Auto", "One-Hot",
"Compact", "Sequential",
"Gray", "Johnson", "User",
"Speed1", "None"

"Auto" -fsm_extract

-fsm_encoding

"FSM Style" list "LUT", "Bram" "LUT" -fsm_style

"Generate RTL
Schematic"

list "Yes", "No", "Only" "Yes" -rtlview

"Generics,
Parameters"

string -generics

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 347

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
XST Command-Line
Equiv alent

"Global
Optimization Goal"

list "AllClockNets", "Inpad
To Outpad", "Offset In
Before", "Offset Out
After", "Maximum Delay"

"AllClockNets" -glob_opt

"HDL INI File" filename -xsthdpini

"Hierarchy
Separator"

list "/" or "_" "/" -hierarchy_separator

"Keep Hierarchy" list "No", "Yes", "Soft" "No" -keep_hierarchy

"Library for Verilog
Sources"
(S6/V6/7 series/Zynq
only)

string

"Library Search
Order"

filenames .lso files -lso

"Logical Shifter
Extraction"
(S3/A/E/V4/V5 only)

boolean TRUE, FALSE TRUE -shift_extract

"LUT Combining"
(S6/V5/V6/7
series/Zynq only)

list "No", "Auto", "Area" "No" (V5);
"Auto" (S6/V6/7
series/Zynq)

-lc

"LUT-FF Pairs
Utilization Ratio"
(S6/V5/V6/7
series/Zynq only)

range -1 to 100 100 -slice_utilization_ratio

"Max Fanout" range 0 - 10000+ 100,000
(S6/V5/V6/7
series/Zynq);
500 (S3/A/E/V4)

-max_fanout

"Move First
Flip-Flop Stage"

boolean TRUE, FALSE [dependent] -move_first_stage

"Move Last
Flip-Flop Stage"

boolean TRUE, FALSE [dependent] -move_last_stage

"Multiplier Style"
(S3/S3E/S3A only)

list "Auto", "Block", "LUT",
"Pipe_LUT"

"Auto" -mux_style

"Mux Extraction"
(S3/A/E/V4/V5 only)

list "Yes", "No", "Force" "Yes" -mux_extract

"Mux Style"
(S3/A/E/V4/V5 only)

list "Auto", "MUXF",
"MUXCY"

"Auto" -mux_style

"Netlist Hierarchy" list "As Optimized", "Rebuilt" "As Optimized" -netlist_hierarchy

"Number of Clock
Buffers" (all but V4)

range 0 - 32 32 -bufg

"Number of Global
Clock Buffers" (V4)

range 0 - 32 32 -bufg

"Number of
Regional Clock
Buffers" (V4)

range 0 - 16 16 -bufr

"Optimization
Effort"

list "Normal", "High", "Fast"*
(*S6/V6/7 series/Zynq only)

"Normal" -opt_level

Command Line Tools User Guide
348 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
XST Command-Line
Equiv alent

"Optimization Goal" list "Speed", "Area" "Speed" -opt_mode

"Optimize
Instantiated
Primitives"

boolean TRUE, FALSE FALSE -optimize_primitives

"Other XST
Command Line
Options"

text string any legal command-line
equivalent arguments
that are not already set
through other properties

none none

"Pack I/O Registers
into IOBs"

list "Auto", "Yes", "No" "Auto" -iob

"Power Reduction"
(S6/V4/V5/V6/7
series/Zynq only)

boolean TRUE, FALSE FALSE -power

"Priority Encoder
Extraction"
(S3/A/E/V4/V5 only)

list "Yes", "No", "Force" "Yes" -priority_extract

"RAM Extraction" boolean TRUE, FALSE TRUE -ram_extract

"RAM Style" list "Auto", "Distributed",
"Block"

"Auto" -ram_style

"Read Cores" list "Yes", "No" "Yes" -read_cores

"Reduce Control
Sets"
(S6/V5/V6/7
series/Zynq only)

list "No", "Auto" "No" (V5);
"Auto" (S6/V6/7
series/Zynq)

-reduce_control_sets

"Register Balancing" list "No", "Yes", "Forward",
"Backward"

"No" -register_balancing

"Register
Duplication"

boolean TRUE, FALSE TRUE -register_duplication

"Resource Sharing" boolean TRUE, FALSE TRUE -resource_sharing

"ROM Extraction" boolean TRUE, FALSE TRUE -rom_extract

"ROM Style" list "Auto", "Distributed",
"Block"

"Auto" -rom_style

"Safe
Implementation"

list "No", "Yes" "No" -safe_implementation

"Shift Register
Extraction"

boolean TRUE, FALSE TRUE -shreg_extract

"Shift Register
Minimum Size"
(S6/V6/7 series/Zynq
only)

string "2"

"Slice Packing"
(S3/A/E/V4/V5 only)

boolean TRUE, FALSE TRUE -slice_packing

"Slice Utilization
Ratio"
(S3/A/E/V4 only)

range -1 to 100 100 -slice_utilization_ratio

"Synthesis
Constraints File"

filename -uc

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 349

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
XST Command-Line
Equiv alent

"Use Clock Enable" list "Auto", "Yes", "No" "Auto" (V4/V5);
"Yes"
(S3/A/E/S6/V6/7
series/Zynq)

-use_clock_enable

"Use DSP Block" list "Auto", "Yes", "No" "Auto" -use_dsp48

"Use Synchronous
Reset"

list "Auto", "Yes", "No" "Auto"
(S6/V4/V5/V6/7
series/Zynq);
"Yes" (S3/A/E)

-use_sync_reset

"Use Synchronous
Set"

list "Auto", "Yes", "No" "Auto"
(S6/V4/V5/V6/7
series/Zynq);
"Yes" (S3/A/E)

-use_sync_set

"Use Synthesis
Constraints File"

boolean TRUE, FALSE TRUE -iuc

"Verilog 2001"
(S3/A/E/V4/V5 only)

boolean TRUE, FALSE TRUE -verilog2001

"Verilog Include
Directories"

filenames -vlgincdir

"Verilog Macros" text string use with -define

"Work Directory" filename ./xst -xsthdpdir

"Write Timing
Constraints"

boolean TRUE, FALSE FALSE -write_timing_
constraints

"XOR Collapsing"
(S3/A/E/V4/V5 only)

boolean TRUE, FALSE TRUE -xor_collapse

Command Line Tools User Guide
350 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Process Proper ties - Translate Process
The following table of Translate (NGDBuild) Process Properties can be used with
project set and project get with -process Translate.

Translate Process Proper ties
Note the values listed in this table are associated with NGDBuild processes when
applied to Virtex5 devices. In a few cases, values may differ for other devices.

Note the "command-line equivalent" column is intended not as an explanation of the
shell command-line syntax, but as a reference should you wish to refer to this equivalent
argument elsewhere in this guide.

Proper ty Name Type Allo wed Values in Tcl Default Value
NGDBuild Command-Line
Equiv alent

"Allow Unexpanded
Blocks"

boolean TRUE, FALSE FALSE -u

"Allow Unmatched
LOC Constraints"

boolean TRUE, FALSE FALSE -aul

"Allow Unmatched
Timing Group
Constraints"

boolean TRUE, FALSE FALSE -aut

"Create I/O Pads
from Ports"

boolean TRUE, FALSE FALSE -a

"Macro Search Path" filenames filenames separated with
"|" separator

-sd

"Netlist Translation
Type"

list "Timestamp", "On", "Off" "Timestamp" -nt

"Other NGDBuild
Command Line
Options"

text string any legal command-line
equivalent arguments that
are not already set through
other properties

none none

"Use LOC
Constraints"

boolean TRUE, FALSE TRUE -r means FALSE

"User Rules File for
Netlister Launcher"

filename -- -- -ur

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 351

Chapter 27: Tcl Reference

Process Proper ties - Map Process
The following table of Map Process Properties can be used with project set and
project get with -process Map.

Map Process Proper ties
Note the values listed in this table are associated with map processes when applied to
Virtex®-5 devices. In a few cases, values may differ for other devices.

Note the "command-line equivalent" column is intended not as an explanation of the
shell command-line syntax, but as a reference should you wish to refer to this equivalent
argument elsewhere in this guide.

Proper ty Name Type Allo wed Values in Tcl Default Value
MAP Command-Line
Equiv alent

"Allow Logic
OptimizationAcross
Hierarchy"

boolean TRUE, FALSE FALSE -ignore_keep_
hierarchy

"CLB Pack Factor
Percentage"
(S3/A/E/V4 only)

range 0-100 100 -c

"Combinatorial
Logic Optimization"

boolean TRUE, FALSE FALSE -logic_opt

"Register Ordering"
(S6/V6/7 series/Zynq
only)

list "Off", "4", "8" "4" -r

"Enable
Multi-Threading"
(S6/V5/V6/7
series/Zynq only)

list "Off", "2" "Off" -mt

"Equivalent Register
Removal"
(S6/V4/V5/V6/7
series/Zynq only)

boolean TRUE, FALSE TRUE
(dependent)

-equivalent_register_
removal

"Extra Cost Tables"
(S6/V6/7 series/Zynq
only)

list "0"–"5" "0" -xt

"Extra Effort"
(S3/A/E/V4 only)

list "None", "Normal",
"Continue on Impossible"

"None" -xe

"Generate Detailed
MAP Report"

boolean TRUE, FALSE FALSE -detail

"Global
Optimization"
(S6/V4/V5/V6/7
series/Zynq only)

list "Off", "Speed", "Area",
"Power" (Area and Power
not for V4)

"Off" -global_opt

"Ignore User Timing
Constraints" (also see
Timing Mode)

boolean TRUE, FALSE FALSE -ntd

-x (for Virtex-5 devices)

"LUT Combining"
(S6/V5/V6/7
series/Zynq only)

list "Off", "Auto", "Area" "Off" -lc (off, auto, area)

"Map Effort Level"
(dependent property)
(S3/A/E/V4 only)

list "Standard", "High" "Standard" -ol

Command Line Tools User Guide
352 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
MAP Command-Line
Equiv alent

"Map Slice Logic
into Unused Block
RAMs"

boolean TRUE, FALSE FALSE -bp

"Maximum
Compression"
(S6/V5/V6/7
series/Zynq only)

boolean TRUE, FALSE FALSE -c

"Optimization
Strategy (Cover
Mode)"
(S3/A/E/V4/V5 only)

list "Area", "Speed",
"Balanced", "Off"

"Area" -cm

"Other Map
Command Line
Options"

text string any legal command-line
equivalent arguments that
are not already set through
other properties

none none

"Pack I/O
Registers/Latches
into IOBs"

list "For Inputs and Outputs",
"For Inputs Only", "For
Outputs Only", "Off"

"Off" -pr

"Perform
Timing-Driven
Packing and
Placement"
(S3/A/E/V4 only)

boolean TRUE, FALSE FALSE -timing

"Placer Effort Level"
(S6/V5/V6/7
series/Zynq only)

list "Standard", "High" "High" -ol

"Placer Extra Effort"
(dependent property)
(S6/V5/V6/7
series/Zynq only)

list "None", "Normal",
"Continue on Impossible"

"None" -xe

"PowerActivity File"
(dependent on Power
Reduction)

filename -activityfile

"Power Reduction" list "Off", "On", "High", "Extra
Effort" (High, Extra Effort
S6/V6/7 series/Zynq only)

"Off" -power

"Register
Duplication"

list "Off", "On" "Off" -register_duplication

"Starting Placer Cost
Table (1-100)"

range 1-100 1 -t

"Timing Mode"
(dependent property,
related to Ignore User
Timing Constraints)

list "Performance Evaluation",
"Non Timing Driven"

"Performance
Evaluation"

see -ntd and -x

"Trim Unconnected
Signals"

boolean TRUE, FALSE TRUE -u

"Use RLOC
Constraints"

list "Yes", "No", "For Packing
Only"

"Yes" -ir

"Ignore User Timing
Constraints"

boolean TRUE, FALSE FALSE -x

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 353

Chapter 27: Tcl Reference

Process Proper ties - Place and Route Process
The following table of Place and Route (PAR) Process Properties can be used with
project set and project get with -process "Place & Route".

Place and Route (PAR) Process Proper ties
Note the values listed in this table are associated with PAR processes when applied to
Virtex®-4 devices. In some cases, values may differ for other devices.

Note the "command-line equivalent" column is intended not as an explanation of the
shell command-line syntax, but as a reference should you wish to refer to this equivalent
argument elsewhere in this guide.

Proper ty Name Type Allo wed Values in Tcl Default Value
PAR Command-Line
Equiv alent

"Enable
Multi-Threading"
(S6/V5/V6/7
series/Zynq only)

list "Off", "2", "3", "4" "Off" -mt

"Extra Effort
(Highest PAR level
only)" (dependent
property, only
available if Highest
PAR level set)

list "None", "Normal",
"Continue on Impossible"

"None" -xe

"Generate
Asynchronous
Delay Report"

boolean TRUE, FALSE FALSE -delay (ReportGen)

"Generate Clock
Region Report"

boolean TRUE, FALSE FALSE -clock_regions (ReportGen)

"Generate Post-Place
& Route Simulation
Model"

boolean TRUE, FALSE FALSE netgen process

"Ignore User Timing
Constraints" (also see
Timing Mode)

boolean TRUE, FALSE FALSE -ntd

-x (for Virtex-5 devices)

"Other Place &
Route Command
Line Options"

text string any legal command-line
equivalent arguments
that are not already set
through other properties

none none

"Place&Route Effort
Level (Overall)"

list "Standard", "High" "Standard" -ol

"Place and Route
Mode"

list "Normal Place and Route",
"Place Only", "Route
Only", "Reentrant Route"
("Normal Place and Route"
and "Place Only" S3/A/E/V4
only)

"Normal Place
and Route"
(S3/A/E/V4);
"Route Only"
(S6/V5/V6/7
series/Zynq)

Different selections correspond to
options:

-r, -p, -k

"Placer Effort Level
(Overrides Overall
Level)"
(S3/A/E/V4 only)

list "None", "Standard",
"High"

"None" -pl

"Power Activity File" filename -activityfile

"Power Reduction" boolean TRUE, FALSE FALSE -power

Command Line Tools User Guide
354 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
PAR Command-Line
Equiv alent

"Router Effort Level
(Overrides Overall
Level)"
(S3/A/E/V4 only)

list "None", "Standard",
"High"

"None" -rl

"Starting Placer Cost
Table (1-100)"
(S3/A/E/V4 only)

range 1-100 1 -t

"Timing Mode"
(dependent property,
related to Ignore User
Timing Constraints)

list "Performance Evaluation",
"Non Timing Driven"

"Performance
Evaluation"

see -ntd and -x

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 355

Chapter 27: Tcl Reference

Process Proper ties - Generate Programming File Process
The following table of Generate Programming File (BitGen) Process Properties can
be used with project set and project get with -process "Generate
Programming File".

Generate Programming File Process Proper ties
Note Properties for this process are very device-dependent. In the interest of space,
the following table lists property name and some of the device families appropriate
to the property, with the values listed for one device only (Virtex®-5 devices when
appropriate). This table should not be considered a device-specific instruction for these
properties. Please consult the specific BitGen options in the BitGen Command Line
Options section of this guide for detailed information.

Note the "command-line equivalent" column is intended not as an explanation of the
shell command-line syntax, but as a reference should you wish to refer to this equivalent
argument elsewhere in this guide.

Proper ty Name Type Allo wed Values in Tcl Default Value
BitGen Command Line
Equiv alent

"AES Initial Vector"
(S6/V4/V5/V6/7
series/Zynq™ only)

string hex string -g startCBC

"AES Key (Hex
String)"
(S6/V4/V5/V6/7
series/Zynq only)

string hex string [empty] -g Key0

"Allow SelectMAP
Pins to Persist"

boolean TRUE, FALSE FALSE -g Persist

"BPI Reads Per Page"
(V5/V6/7 series/Zynq
only)

list 1, 4, 8 1 -g BPI_page_size

"Configuration
Clk (Configuration
Pins)"
(S3/V4/V5/V6/7
series/Zynq only)

list "Pull Up", "Float" "Pull Up" -g CclkPin

"Configuration Pin
Busy"
(V4/V5/V6 only)

list "Pull Up", "Float",
"Pull Down"

"Pull Up" -g BusyPin

"Configuration Pin
CS"
(V4/V5/V6 only)

list "Pull Up", "Float",
"Pull Down"

"Pull Up" -g CsPin

"Configuration Pin
DIn"
(V4/V5/V6 only)

list "Pull Up", "Float",
"Pull Down"

"Pull Up" -g DinPin

"Configuration Pin
Done"

list "Pull Up", "Float" "Pull Up" -g DonePin

"Configuration Pin
HSWAPEN"
(S3/V4/V5/V6/S6
only)

list "Pull Up", "Float",
"Pull Down"

"Pull Up" -g HswapenPin

Command Line Tools User Guide
356 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
BitGen Command Line
Equiv alent

"Configuration Pin
Init"
(V4/V5/V6/7
series/Zynq only)

list "Pull Up", "Float" "Pull Up" -g InitPin

"Configuration Pin
M0"
(S3/V4/V5/V6/7
series/Zynq only)

list "Pull Up", "Float",
"Pull Down"

"Pull Up" -g M0Pin

"Configuration Pin
M1"
(S3/V4/V5/V6/7
series/Zynq only)

list "Pull Up", "Float",
"Pull Down"

"Pull Up" -g M1Pin

"Configuration Pin
M2"
(S3/V4/V5/V6/7
series/Zynq only)

list "Pull Up", "Float",
"Pull Down"

"Pull Up" -g M2Pin

"Configuration Pin
Powerdown"
(V4 only)

list "Pull Up", "Float" "Pull Up" -g PowerdownPin

"Configuration Pin
Program"

list "Pull Up", "Float" "Pull Up" -g ProgPin

"Configuration Pin
RdWr"
(V4/V5/V6 only)

list "Pull Up", "Float", "Pull
Down"

"Pull Up" -g RdWrPin

"Configuration
Rate"

list 2, 6, 9, 13, 17, 20, 24, 27, 31,
35, 38, 42, 46, 49, 53, 56, 60

2 -g ConfigRate

"Create ASCII
Configuration File"

boolean TRUE, FALSE FALSE -b

"Create Binary
Configuration File"

boolean TRUE, FALSE FALSE -g Binary

"Create Bit File" boolean TRUE, FALSE TRUE -j

"Create IEEE 1532
Configuration File"

boolean TRUE, FALSE FALSE -g IEEE1532

"Create Logic
Allocation File"
(dependent)

boolean TRUE, FALSE FALSE -l

"Create Mask File" boolean TRUE, FALSE FALSE -m

"Create ReadBack
Data Files"

boolean TRUE, FALSE FALSE -g Readback

"Cycles for First BPI
Page Read"
(V5/V6/7 series/Zynq
only)

list 1, 2, 3, 4 1 -g BPI_1st_read_cycle

"DCI Update Mode"
(S3/V4/V5/V6/7
series/Zynq only)

list "As Required",
Continuous, Quiet(Off)

"As Required" -g DCIUpdateMode

"Disable JTAG
Connection"
(V6/7 series/Zynq
only)

boolean TRUE, FALSE FALSE -g Disable_JTAG

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 357

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
BitGen Command Line
Equiv alent

"Done (Output
Events)"

list "Default (4)", 1, 2, 3, 4, 5, 6 "Default (4)" -g DONE_cycle

"Drive Awake Pin
During Suspend /
Wake Sequence"

boolean TRUE, FALSE FALSE -g Drive_awake

"Drive Done Pin
High"
(S3/S6/V4/V5/V6
only)

boolean TRUE, FALSE FALSE -g DriveDone

"Enable BitStream
Compression"

boolean TRUE, FALSE FALSE -g Compress

"Enable Cyclic
Redundancy
Checking (CRC)"

boolean TRUE, FALSE TRUE -g CRC

"Enable Debugging
of Serial Mode
BitStream"

boolean TRUE, FALSE FALSE -g DebugBitstream

"Enable External
Master Clock"
(S6 only)

boolean TRUE, FALSE FALSE -g ExtMasterCclk_en

"Enable Filter on
Suspend Input"
(S3A only)

boolean TRUE, FALSE TRUE -g Suspend_filter

"Enable Internal
Done Pipe"

boolean TRUE, FALSE FALSE -g DonePipe

"Enable Outputs
(Output Events)"

list "Default (5)", "1", "2", "3",
"4", "5", "6", "Done", "Keep"

"Default (5)" -g DONE_cycle

"Enable Power-On
Reset Detection"
(S3A only)

boolean TRUE, FALSE TRUE -g en_porb

"Enable
Suspend/Wake
Global Set/Reset"
(S3A/S6 only)

boolean TRUE, FALSE FALSE -g en_sw_gsr

"Encrypt Bitstream"
(S6/V4/V5/V6/7
series/Zynq only)

boolean TRUE, FALSE FALSE -g Encrypt

"Encrypt Key Select"
(S6/V6/7 series/Zynq
only)

list "BBRAM", "eFUSE" "BBRAM" -g EncryptKeySelect

"Fallback
Reconfiguration"
(V5/V6/7 series/Zynq
only)

list "Enable", "Disable" "Enable" -g ConfigFallback

"FPGA Start-Up
Clock"

list "CCLK", "User Clock",
"JTAG Clock"

"CCLK" -g StartupClk

"GTS Cycle During
Suspend / Wakeup
Sequence"
(S3A/S6 only)

range 1 - 1024 4 -g sw_gts_cycle

Command Line Tools User Guide
358 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
BitGen Command Line
Equiv alent

"GWE Cycle During
Suspend / Wakeup
Sequence"
(S3A/S6 only)

range 1 - 1024 5 -g sw_gwe_cycle

"HMAC Key (Hex
String)"
(V6/7 series/Zynq
only)

string [empty] -g HKey

"Internal RS[1:0]
Value"
(7 series/Zynq only)

binary 00, 01, 10, 11 00 -g RevisionSelect

"Input Encryption
Key File"
(S6/V4/V5/V6/7
series/Zynq only)

filename -g KeyFile

"JTAG Pin TCK" list "Pull Up", "Float", "Pull
Down"

"Pull Up" -g TckPin

"JTAG Pin TDI" list "Pull Up", "Float", "Pull
Down"

"Pull Up" -g TdiPin

"JTAG Pin TDO" list "Pull Up", "Float", "Pull
Down"

"Pull Up" -g TdoPin

"JTAG Pin TMS" list "Pull Up", "Float", "Pull
Down"

"Pull Up" -g TmsPin

"JTAG to
System Monitor
Connection"
(V5/V6/7 series/Zynq
only)

list "Enable", "Disable" “Enable” -g JTAG_SysMon

"Match Cycle"
(V5/V6/7 series/Zynq
only)

list "Auto", "0", "1", "2", "3", "4",
"5", "6", "NoWait"

"Auto" -g Match_cycle

"MultiBoot: Next
Configuration
Mode"
(dependent)
(S3A/S6 only)

string hex string 0x001 -g next_config_boot_mode

"MultiBoot: Starting
Address for Golden
Configuration"
(dependent)
(S6 only)

string hex string 0x00000000 -g golden_config_addr

"MultiBoot: Starting
Address for Next
Configuration"
(dependent)
(S3A/S6 only)

string hex string 0x00000000 -g next_config_addr

"MultiBoot: Use
New Mode for Next
Configuration"
(dependent)
(S3A/S6 only)

boolean TRUE, FALSE TRUE -g next_config_new_mode

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 359

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
BitGen Command Line
Equiv alent

"MultiBoot:
User-Defined
Register for Failsafe
Scheme"
(dependent)
(S6 only)

string hex string 0x0000 -g failsafe_user

"Other BitGen
Command Line
Options"

text string any legal command-line
equivalent arguments that
are not already set through
other properties

none none

"Place MultiBoot
Settings into
Bitstream"
(S3A/S6 only)

boolean TRUE, FALSE FALSE

"Power Down
Device if Over Safe
Temperature"
(V5 only)

boolean TRUE, FALSE FALSE -g OverTempPowerDown

"Release Write
Enable (Output
Events)"

list "Default (6)", "1", "2", "3",
"4", "5", "6", "Done", "Keep"

"Default (6)" -g GWE_cycle

"Reset DCM if
SHUTDOWN
& AGHIGH
performed"
(S3/E only)

boolean TRUE, FALSE FALSE -g DCMShutdown

"RS[1:0] Tristate
Enable"
(7 series/Zynq only)

boolean TRUE, FALSE FALSE -g RevisionSelect_tristate

"Run Design Rules
Checker (DRC)"

boolean TRUE, FALSE TRUE -d

"Security" list "Enable Readback
and Reconfiguration",
"Disable Readback",
"Disable Readback and
Reconfiguration"

"Enable
Readback and
Reconfiguration"

-g Security

"SelectMAP Abort
Sequence"
(V5 only)

list "Enable", "Disable" "Enable" -g SelectMAPAbort

"Setup External
Master Clock
Division"
(S6 only)

list "1", "2"-"1022" (even
numbers)

"1" [dependent] -g ExtMasterCclk_divide

"Set SPI
Configuration Bus
Width"
(S6 only)

list "1", "2", "4" "1" -g SPI_buswidth

"Starting Address
for Fallback
Configuration"
(V6/7 series/Zynq
only)

string hex string 0x00000000 -g next_config_addr

Command Line Tools User Guide
360 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
BitGen Command Line
Equiv alent

"Unused IOB Pins" list "Pull Down", "Float", "Pull
Up"

"Pull Down" -g UnusedPin

"UserID Code (8
Digit Hexadecimal)"

string 8-digit hexadecimal digit 0xFFFFFFFF -g UserID

"Wait for DCI Match
(Output Events)"
(S3/V4/V5/V6/7
series/Zynq only)

list "0", "1", "2", "3", "4", "5", "6",
"NoWait", "Auto"

"Auto" -g Match_cycle

"Wait for DLL Lock
(Output Events)"
(S3/A/E/V4/V5)

list "0", "1", "2", "3", "4", "5", "6",
"NoWait"

"NoWait" -g LCK_cycle

"Wait for DLL and
PLL Lock (Output
Events)"
(S6/V6/7 series/Zynq
only)

list "0", "1", "2", "3", "4", "5", "6",
"NoWait"

"NoWait" -g LCK_cycle

"Wait for PLL Lock
(Output Events)"
(V6/7 series/Zynq
only)

list "0", "1", "2", "3", "4", "5", "6",
"NoWait"

"NoWait" -g LCK_cycle

"Wakeup Clock"
(S3A/S6 only)

list "Startup Clock", "Internal
Clock"

"Startup Clock" -g Sw_clk

"Watchdog Timer
Mode"
(V5/V6/7 series/Zynq
only)

list "Off", "Config", "User" "Off"

"Watchdog Timer
Value"
(dependent)
(S6/V5/V6/7
series/Zynq only)

string hex string 0x000000
(V5/V6/7
series/Zynq);
0xFFFF (S6)

-g TIMER_CFG

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 361

Chapter 27: Tcl Reference

Process Proper ties - Generate Post-Place and Route Simulation
Model Process

The following table of Generate Post-Place and Route Simulation Model (NetGen)
Process Properties can be used with project set and project get with -process
"Generate Post-Place & Route Simulation Model".

Generate Post-Place and Route Simulation Model Process Proper ties
Note the values listed in this table are associated with NetGen processes when applied
to Virtex®-5 devices. In a few cases, values may differ for other devices.

Note the "command-line equivalent" column is intended not as an explanation of the
shell command-line syntax, but as a reference should you wish to refer to this equivalent
argument elsewhere in this guide.

Proper ty Name Type Allo wed Values in Tcl Default Value
NetGen Command-Line
Equiv alent

"Automatically
Insert glbl Module
in the Netlist"

boolean TRUE, FALSE TRUE -insert_glbl

"Bring Out Global
Set/Reset Net as a
Port"

boolean TRUE, FALSE FALSE -gp

"Bring Out Global
Tristate Net as a
Port"

boolean TRUE, FALSE FALSE -tp

"Custom Compile
File List"

filenames -hdl_compilation_ order

"Device Speed
Grade/Select ABS
Minimum"

list -3, -2, -1, "Absolute Min" -3 -s

"Generate
Architecture
Only (No Entity
Declaration)"

boolean TRUE, FALSE FALSE -a

"Do Not Escape
Signal and Instance
Names in Netlist"

boolean FALSE, TRUE FALSE -ne

"Generate Multiple
Hierarchical Netlist
Files"

boolean FALSE, TRUE FALSE -insert_glbl

"Global Set/Reset
Port Name"

string GSR_PORT Use with -gp

"Global Tristate Port
Name"

string GTS_PORT Use with -tp

"Include
sdf_annotate task
in Verilog File"

boolean TRUE, FALSE TRUE -sdf_anno

"Include SIMPRIM
Models in Verilog
File"

boolean FALSE, TRUE FALSE -ism

Command Line Tools User Guide
362 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Proper ty Name Type Allo wed Values in Tcl Default Value
NetGen Command-Line
Equiv alent

"Include ’uselib
Directive in Verilog
File"

boolean FALSE, TRUE FALSE -ul

"Insert Buffers
to Prevent Pulse
Swallowing"

boolean TRUE, FALSE TRUE -insert_pp_buffers

"Other NetGen
Command Line
Options"

text string any legal command-line
equivalent arguments
that are not already set
through other properties

none none

"Output Extended
Identifiers"

boolean TRUE, FALSE FALSE -extid

"Rename Design
Instance in
Testbench File to"

text string none -ti

"Rename Top Level
Architecture To"

text string none -ar

"Rename Top Level
Entity to"

text string none -tm

"Rename Top Level
Module To"

text string none -tm

"Reset On
Configuration Pulse
Width"

numeric time in nanoseconds 0 -rpw

"Retain Hierarchy" boolean TRUE, FALSE TRUE -fn

"Simulation Model
Target"

list "Verilog", "VHDL" "Verilog"

"Tristate On
Configuration Pulse
Width"

numeric time in nanoseconds 0 -tpw

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 363

Chapter 27: Tcl Reference

Process Proper ties - Generate Post-Place and Route Static Timing
Process

The following table of Generate Post-Place and Route Static Timing Process Properties
can be used with project set and project get with -process "Generate
Post-Place & Route Static Timing".

Generate Post-Place and Route Static Timing Process Proper ties
Note the values listed in this table are associated with processes when applied to
Virtex®-5 devices. In a few cases, values may differ for other devices.

Note the "command-line equivalent" column is intended not as an explanation of the
shell command-line syntax, but as a reference should you wish to refer to this equivalent
argument elsewhere in this guide.

Proper ty Name Type Allo wed Values in Tcl Default Value
TRACE Command-Line
Equiv alent

"Change Device
Speed To"

list "-2", "-3", "-3N", "-4" -s

"Generate
Constraints
Interaction Report"

boolean FALSE, TRUE FALSE -tsi

"Generate Datasheet
Section"

boolean TRUE, FALSE TRUE -nodatasheet

"Generate
Timegroups
Section"

boolean FALSE, TRUE TRUE -timegroups

"Number of Paths
in Error/Verbose
Report"

numeric 0 to 2 billion 3

"Perform Advanced
Analysis"

boolean FALSE, TRUE TRUE -a

"Report Fastest
Path(s) in Each
Constraint"

boolean TRUE, FALSE TRUE -fastpaths

"Report Paths by
Endpoint"

numeric 0 to 2 billion 0 (no paths
reported by
endpoint)

-n

"Report Type" list "Verbose Report", "Error
Report", "Summary
Report"

"Verbose Report" -v | -e

"Report
Unconstrained
Paths"

numeric 0 to 2 billion 0 (no
unconstrained
paths reported)

-u

"Stamp Timing
Model Filename"

string Name of file to stamp none -stamp

Command Line Tools User Guide
364 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Xilinx Tcl Commands for General Use
In most cases, the examples shown assume that a project has been created with the
project new command or a project has been opened with the project open
command. Project files are added with the xfile add command.

To view how Xilinx® Tcl commands can be used in a realistic way, see the Example Tcl
Scripts located at the end of this chapter.

The following table summarizes the Xilinx Tcl commands for general use

Commands Subcommands
lib_vhdl (manage VHDL libraries add_file

get
delete
new
properties

process (run and manage project processes) get
properties
run
set

project (create and manage projects) archive
clean
close
get
get_processes
new
open
properties
set

xfile
(manage project files)

add
get
properties
remove
set

lib_vhdl (manage VHDL libraries)
This command manages VHDL libraries within an ISE® project.

Use the lib_vhdl command to create, delete, add to VHDL libraries, and get information
on any VHDL library in the current project.

Syntax
% lib_vhdl subcommand

Available subcommands are:
• new (create a new library)
• delete (delete a library)
• add_file (add a source file to a library)
• properties (get the list of library properties)
• get (get a library property value)

For More Information
For more information about a subcommand, type:
% help lib_vhdl subcommand

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 365

Chapter 27: Tcl Reference

lib_vhdl add_file (add a sour ce file to the librar y)
This command adds the source file from the current ISE® project to the existing library
in the current project.

Syntax
% lib_vhdl add_file library_name file_name

lib_vhdl is the Tcl command name.
add_file is the subcommand name.
library_name specifies the name of the VHDL library.
file_name specifies the name of the project source file.

Example
% lib_vhdl add_file mylib top.vhd

This example adds the source file, top.vhd , to the mylib library.

Tcl Return
True if the file was added successfully; otherwise an ERROR message appears.

For More Information
% help lib_vhdl

lib_vhdl delete (delete a librar y)
This command deletes the specified library from the current ISE® project.

Syntax
% lib_vhdl delete library_name

lib_vhdl is the Tcl command name.
delete is the subcommand name.
library_name specifies the name of the library to delete.

Example
% lib_vhdl delete mylib

This example deletes the mylib library from the current project.

Tcl Return
True if the library was deleted successfully; otherwise an ERROR message appears.

For More Information
% help lib_vhdl

lib_vhdl get (get the librar y proper ty value)
The lib_vhdl get command returns the value of the specified library property.

To get a list of all library properties, use lib_vhdl properties (get list of library properties).

Syntax
% lib_vhdl get library_name property_name

Command Line Tools User Guide
366 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

lib_vhdl is the Tcl command name.
get is the subcommand name.
library_name specifies the name of the library.
property_name specifies the name of the library property. Valid property names are
name and files.

Example 1
% lib_vhdl get mylib name

This example returns the name of the mylib library.

Example 2
% lib_vhdl get mylib files

This example returns the list of files in the mylib library.

Tcl Return
The property value if successful; otherwise an ERROR message.

For More Information
% help lib_vhdl

lib_vhdl new (create a new librar y)
This command creates a new library in the current ISE® project.

Syntax
% lib_vhdl new library_name

lib_vhdl is the Tcl command name.
new is the subcommand name.
library_name specifies the name of the library you wish to create.

Example
% lib_vhdl new mylib

This example creates a new VHDL library namedmylib and adds it to the current project.

Tcl Return
True if the library was created successfully; otherwise ERROR message appears.

For More Information
% help lib_vhdl

lib_vhdl proper ties (get list of librar y proper ties)
This command returns a list of all library properties.

To see the value of a specific library property, use lib_vhdl get (get the library property
value).

Syntax
% lib_vhdl properties

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 367

Chapter 27: Tcl Reference

lib_vhdl is the Tcl command name.
properties is the subcommand name.

Example
% lib_vhdl properties

This example returns a list of library properties.

Tcl Return
A list of properties if successful; otherwise an ERROR message.

For More Information
% help lib_vhdl

process (run and manage project processes)
This command runs and manages all processes within the current ISE® project.

Syntax
% process subcommand

Available subcommands are:
• get (get the value of the specified property for a process)
• properties (list process properties)
• run (run process task)
• set (set the value of the specified property on a process)

For More Information
For more information about a subcommand, type:
% help process subcommand

process get (get the value of the specified proper ty for a process)
This command gets the status of the specified process task.

Note The list of available processes changes based on the source file you select. Use
the% project get_processes command to get a list of available processes. Type%
help project get_processes for more information.

Syntax
% process get process_task property_name

process is the Tcl command name.
get is the subcommand name.
process_task specifies the name of one of the process tasks for which to get the property.
Process tasks are listed in the Processes pane of the Design panel in Project Navigator.
The list of available processes changes based on the source file you select. Use the %
project get_processes command to get a list of available processes. Type% help
project get_processes for more information.
property_name is the name of the property. Valid properties for this command are
"status" and "name."

Command Line Tools User Guide
368 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Example 1
% process get "Map" status

This example gets the current status of the Map process.

Example 2
% process get "place" name

This example gets the full name of the process that starts with the string "place". The
returned value will be "Place & Route".

Tcl Return
The value of the specified property as a text string.

For More Information
% help process

process proper ties (list process proper ties)
This command lists the process properties. Two properties are supported for this
command:
• The "name" property is used to print the ISE® process name.
• The "status" property is used to manage the status information on the process.

Syntax
% process properties

process is the Tcl command name.
properties is the subcommand name.

Example
% process properties

This example lists all process properties.

Tcl Return
The available process properties as a Tcl list.

For More Information
% help process

process run (run process task)
This command runs the specified process task in the current ISE® project.

Note The list of available processes changes based on the source file you select. Use
the% project get_processes command to get a list of available processes. Type%
help project get_processes for more information.

Syntax
% process run process_task [-instance instance_name] [-force {
rerun | rerun_all }]

process is the Tcl command name.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 369

Chapter 27: Tcl Reference

run is the subcommand name.
process_task specifies the name of the process task to run. Process tasks are listed in the
Project Navigator Process pane.
-instance is the option to limit the search for processes to the specified instance_name.
instance_name specifies the name of the instance to limit search of the process_task for.
The default is the top-level instance.
-force is the option to force the re-implementation of the specified process regardless
of the current state of the process.

rerun reruns the processes and updates input data as necessary, by running any
dependent processes that are out-of-date.
rerun_all reruns the processes and all dependent processes back to the source data,
as defined by the specified process goal. All processes are run whether they are out
of date or not.

Note Process run will return true if it was able to launch the process regardless of
the process result. To determine the specific process run results, use the process get
command.

Example 1
% process run "Translate"

This example runs the "Translate" process.

Example 2
% process run "Implement Design" -force rerun_all
% set my_status [process get “Implement Design” status]

The first command forces the re-implementation of the entire design, regardless of
whether all source files are up-to-date or not. The second command sets ‘my_status’
to a string value representing the end status of the process. Possible status values are:
never_run, up_to_date, warnings, errors, aborted, out_of_date, and running.

Tcl Return
True if the process was successfully launched; false otherwise.

For More Information
% help process

process set (set the value of the specified proper ty on a process)
The process set command is used to set the property value for the specified process.

Note The list of available processes changes based on the source file you select. Use
the% project get_processes command to get a list of available processes. Type%
help project get_processes for more information.

Syntax
% process set process_task property_name property_value

process is the Tcl command name.
set is the subcommand name.
process_task specifies the name of one of the process tasks on which the property needs to
be set. Process tasks are listed in the Process window in Project Navigator.
property_name is the name of the property. Currently, the only property supported for
this command is "status".

Command Line Tools User Guide
370 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

property_value specifies the name of the property value. The list of property values
are:-"up_to_date"

Example
% process set "Map" status up_to_date

This example forces the up_to_date status on the Map process. If the MAP process was
out_of_date for some reason, this command will force the MAP process to be up_to_date
and in ISE® Project Navigator, a green tick will be displayed by the process name.

Tcl Return
The value of the property set as a text string.

For More Information
% help process

project (create and manage projects)
This command creates and manages ISE® projects. A project contains all files and data
related to a design. You can create a project to manage all of the design files and to
enable different processes to work on the design.

Syntax
% project subcommand

Available subcommands are:
• archive (archive all files belonging to the current ISE project)
• clean (remove system-generated project files)
• close (close the ISE project)
• get (get project properties)
• get_processes (get project processes)
• new (create a new ISE project)
• open (open an ISE project)
• properties (list project properties)
• set (set project properties, values, and options)

For More Information
For more information about a subcommand, type:
% help project subcommand

project archive (archive all project files)
The project archive command archives all of the files in the current ISE® project,
including temporary, system-generated, and HDL source files. Note that if some of these
files, typically HDL source files, are from remote directories and were not copied to the
current project directory with the xfile add -copy command, then these files will
not be automatically copied to their original directories once the archive is restored.
Manually copying these files to the remote locations is necessary.

Syntax
% project archive archive_name

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 371

Chapter 27: Tcl Reference

project is the Tcl command name.
archive is the subcommand name.
archive_name is the name of the archive that all files will be saved to. Typically, the
archive file has a .zip extension. If no extension is specified, .zip is assumed.

Caution! If the specified archive name already exists, the existing archive is overwritten.

Example
% project archive myarchive.zip

This example archives all files in the current project. The name of the archive is
myarchive.zip .

Tcl Return
True if the project is archived successfully; false otherwise.

For More Information
% help project

project clean (remove system-g enerated project files)
The project clean command removes all of the temporary and system-generated files
in the current ISE® project. It does not remove any source files, like Verilog or VHDL,
nor does it remove any user-modified files. For example, system-generated design and
report files like the NCD (.ncd) and map report (.mpr) are removed with the project
clean command, unless they have been user-modified.

Syntax
% project clean

project is the Tcl command name.
clean is the subcommand name.

Caution! The project clean command permanently deletes all system-generated files
from the current project. These files include the NGD, NGA, and NCD files generated
by the implementation tools.

Example
% project clean

This example cleans the current project. All temporary and system-generated files are
removed.

Tcl Return
True if the project is cleaned successfully; false otherwise.

For More Information
% help project

project close (close the ISE project)
The project close command closes the current ISE® project.

Syntax
% project close

Command Line Tools User Guide
372 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

project is the Tcl command name.
close is the subcommand name.

Example
% project close

This example closes the current project.

Tcl Return
True if the project is closed successfully; false otherwise.

For More Information
% help project

project get (get project proper ties)
The project get command returns the value of the specified project-level property or
batch application option.

Syntax
% project get { option_name|property_name } [-process
process_name] [-instance instance_name]

project is the Tcl command name.
get is the subcommand name.
option_name specifies the name of the batch application option you wish to get the
value of, such as Map Effort Level. Batch application options are entered as strings
distinguished by double quotes (""). You can specify either the exact text representation
of the option in Project Navigator, or a portion. If only a portion, this command attempts
to complete option_name or lists an error message if a unique option_name is not found.
property_name specifies the name of the property you wish to get the value of. Valid
property names are family, device, generated_simulation_language, package, speed,
and top.
-process is the command that limits the properties listed to only those for the specified
process. By default, the properties for all synthesis and implementation processes are
listed. You can also specify "all" to list the properties for all project processes.
process_name specifies the name of the process for which the value of option_name is
to be obtained.
-instance is the command to limit the search for the option_name to the specified
instance_name.
instance_name specifies the name of the instance to look for the option_name. This is
only needed if you want to limit search of the option_name to processes applicable to
instance_name, which may only be part of the design. It is necessary to specify the full
hierarchical instance name; the default is the top-level instance.

Example
% project get speed

This example gets the value of the speed grade that was set with the "project set speed"
command.

Tcl Return
The property value as a text string.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 373

Chapter 27: Tcl Reference

For More Information
% help project

project get_processes (get project processes)
The project get_processes command lists the available processes for the specified
instance.

Syntax
% project get_processes [-instance instance_name]

project is the Tcl command name.
get_processes is the subcommand name.
-instance limits the properties listed to only those of the specified instance. If no
instance is specified, the top-level instance is used by default.
instance_name specifies the name of the instance you wish to know the available
processes for.

Example
% project get_processes -instance /stopwatch/Inst_dcm1

This example lists all of the available processes for only the instance
/stopwatch/Inst_dcm1.

Tcl Return
The available processes as a Tcl list.

For More Information
% help project

project new (create a new ISE project)
The project new command creates a new ISE® project.

Syntax
% project new project_name

project is the Tcl command name.
new is the subcommand name.
project_name specifies the name for the project you wish to create. If an .ise extension is
not specified, it is assumed.

Example
% project new watchver.ise

This example creates a new project named watchver.ise .

Tcl Return
The name of the new project.

For More Information
% help project

Command Line Tools User Guide
374 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

project open (open an ISE project)
The project open command opens an existing ISE® project. If the project does not exist,
an error message to create a new project with the project new command appears. If an
attempt to open an already opened project is made, the current project is closed and the
specified project becomes the current project.

Syntax
% project open project_name

project is the Tcl command name.
open is the subcommand name.
project_name specifies the name for the project you wish to open. If a .ise extension is
not specified, it is assumed.

Example
% project open watchver.ise

This example opens the watchver.ise project in the current directory.

Tcl Return
The name of the open project.

For More Information
% help project

project proper ties (list project proper ties)
The project properties command lists all of the project properties for the specified
process or instance.

Syntax
% project properties [-process process_name] [-instance
instance_name]

project is the Tcl command name.
properties is the subcommand name.
-process process_name limits the properties listed to only those for the specified
process. By default, all properties known to the system are listed.
-instance instance_name limits the properties listed to only those of the specified
instance. If no instance name is specified, the properties for the top-level instance are
listed. You can also specify "top" to specify the top-level instance. Otherwise, it is
necessary to specify the full hierarchical instance name.

Note To get processes information for a specific instance, use the % project
get_processes command. To get property information for specific properties such as
family, device, and speed, use the% project get command.

Example
% project properties -process Map

This example lists the properties available for the Map process in the current project.

Tcl Return
The available properties for the specified process as a Tcl list.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 375

Chapter 27: Tcl Reference

For More Information
% help project

project set (set project proper ties, values, and options)
This command is used to set properties and values for the current ISE® project. For
specific project properties that you can set with this command, see Project Properties
earlier in this chapter.

In addition to setting family and device-specific properties and values, this command
is also used to set options for the batch application tools, including XST (see Process
Properties - Synthesize Process), NetGen (see Process Properties - Generate Post-Place
and Route Simulation Model Process), NGDBuild (see Process Properties - Translate
Process), MAP (see Process Properties - MAP Process), PAR (see Process Properties
- Place and Route Process), TRACE, and BitGen (see Process Properties - Generate
Programming File Process). The set subcommand uses two required arguments. The
first argument assigns the name of the property or variable; and the second argument
assigns the value. The optional -process and -instance arguments limit the
property setting to the specified process and/or instance.

Syntax
% project set property_name property_value [-process
process_name] [-instance instance_name]

project is the Tcl command name.
set is the subcommand name.
property_name specifies the name of the property, variable or batch application option.
property_value specifies the value of the property, variable, or batch application option.
-process process_name limits the property search to only those for the specified process.
By default, the properties for all synthesis and implementation processes are listed. You
can also specify -process all to list the properties for all project processes.
-instance instance_name limits the property search to only those of the specified
instance. If no instance name is specified, the properties for the top-level instance are
listed. You can also specify -instance top to specify the top-level instance. You must
specify the full hierarchical name of the instance.

Note Some batch application options only work when other options are specified. For
example, in XST, the Synthesize Constraints File option only works if the Use Synthesis
Constraints File option is also specified. Batch application options are entered as strings
distinguished by double quotes (""). You can specify either the exact text representation
of the option in Project Navigator, or a portion. If a portion, this command attempts to
complete the option_name or lists an error message if a unique option_name is not found.

Note For VHDL based sources, the top level source is set using the architecture_name
entity_name. See the example below.

Example 1
% project set top /stopwatch/sixty

This example sets the top level source to the instance named "sixty"

Example 2
% project set top inside cnt60

This example sets the top level source to the instance corresponding to the architecture
named "inside" and entity named "cnt60"

Command Line Tools User Guide
376 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Example 3
% project set "Map Effort Level" High

This example sets the map effort level to high.

Tcl Return
The value of the newly set option.

For More Information
% help project

xfile (Manage ISE Sour ce Files)
This command is used to manage all of the source files within an ISE® project. Use this
command to add, remove, and get information on any source files in the current project.

Syntax
% xfile subcommand

Available subcommands are:
• add (add files to project)
• get (get project file properties)
• properties (list file properties)
• remove (remove files from project)
• set (set the value of the specified property for file)

For More Information
For more information about a subcommand, type:
% help xfile subcommand

xfile add (add files to project)
This command adds the specified files to the current ISE® project. If you use the -copy
argument, files are first copied to the current project directory and then added to the
project. Files can be added to a project in any order; wildcards may be used.

You can also add files to the VHDL libraries using this command.

The default association of a file is "All" views. This association can be changed by using
the -view option.

Syntax
% xfile add file_name [-copy] [-lib_vhdl library_name] [-view
view_type] [-include_global]

xfile is the Tcl command name.
add is the subcommand name.
file_name specifies the name of the source file(s) you wish to add to the current project.
Wildcards can be used to specify one or more files to add to the project. Tcl commands
support wildcard characters, such as "*" and "?". Please consult a Tcl manual for more
information on wildcards.
-copy is the optional argument for copying files to the current project.
-lib_vhdl specifies the option to add the file(s) to an existing VHDL library.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 377

Chapter 27: Tcl Reference

library_name is the name of the VHDL library.
-view specifies the option to set the view-type for the source file.
view_type specifies the name of the view-type. Values are:-"All" "Implementation"
"Simulation" "None".
-include_global tells xfile to increment the compile order sequence ID for each of
the sources added to the project.

Example 1
% xfile add alu.vhd processor.vhd alu.ucf

This example adds the alu.vhd , processor.vhd and alu.ucf files to the current
project.

Example 2
% xfile add *.v

This example adds all of the Verilog files from the current directory to the current project.

Example 3
% xfile add test.vhd -lib_vhdl mylib

This example adds the test.vhd source file to the current project. The command also
adds this file to the "mylib" library.

Example 4
% xfile add test_tb.vhd -view "Simulation"

This example adds the test_tb.vhd source file to the simulation view ONLY in the
current project.

Tcl Return
True if the file was added successfully; otherwise false.

For More Information
% help xfile

xfile get (get project file proper ties)
This command returns information on the specified project file and its properties. There
are two properties supported for this command: name and timestamp

Syntax
% xfile get file_name {name|timestamp|include_global}

xfile is the Tcl command name.
get is the subcommand name.
file_name specifies the name of the source file to get the name or timestamp information
on.
name if specified, returns the full path of the specified file.
timestamp if specified, returns the timestamp of when the file was first added to the
project with the xfile add command.
include_global if specified returns the status of the compile order tag (true if the file is
part of the compile order list and false if it is not).

Command Line Tools User Guide
378 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Example
% xfile get stopwatch.vhd timestamp

This example gets the timestamp information for the stopwatch.vhd file.

Tcl Return
The value of the specified property as a text string.

For More Information
% help xfile

xfile proper ties (list file proper ties)
This command lists all of the available file properties. There are two properties
supported for this command: name and timestamp

Syntax
% xfile properties

xfile is the Tcl command name.
properties is the subcommand name.

Note To get a list of all files in the project, use the search command

Example
% xfile properties

This example lists the available properties of files in the current project.

Tcl Return
The available file properties as a Tcl list.

For More Information
For more information, type:
• % help xfile

• % help search

xfile remove (remove files from project)
This command removes the specified files from the current ISE® project.

Note The files are not deleted from the physical location (disk).

Syntax
% xfile remove file_name

xfile is the Tcl command name.
remove is the subcommand name.
file_name specifies the names of the files you wish to remove from the project. Wild cards
are not supported (use a Tcl list instead as shown in Example 3 below).

Example 1
% xfile remove stopwatch.vhd

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 379

Chapter 27: Tcl Reference

This example removes stopwatch.vhd from the current project.

Example 2
% xfile remove alu.vhd processor.vhd

This example removes alu.vhd and processor.vhd from the current project.

Example 3
% xfile remove [search *memory*.vhd -type file]

This example removes all VHDL files with "memory" in the file name from the current
project.
• The command in brackets uses wildcards to create a Tcl list of file names containing

“memory.”
• The list is then used to remove these files from the project.

Example 4
% set file_list [list alu.v processor.v]

% xfile remove $file_list

This example removes alu.v and processor.v from the current project.
• The first command creates a Tcl list named file_list containing the files alu.v and

processor.v .
• The second command removes the files in the list from the project.

Tcl Return
true if the file(s) were removed successfully; false otherwise.

For More Information
% help xfile

xfile set (set the value of the specified proper ty for file)
This command sets property values for the specified file within the current ISE® project.

The only property supported for this command is "lib_vhdl"

Syntax
% xfile set file_name property_name property_value

xfile is the Tcl command name.
set is the subcommand name.
file_name specifies the name of the source file for which the property needs to be set.
property_name specifies the name of the property.
property_value specifies the value of the property.

Example 1
% xfile set stopwatch.vhd lib_vhdl mylib

This example sets the lib_vhdl information for the stopwatch.vhd file and adds it to
the "mylib" library.

Command Line Tools User Guide
380 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Example 2
% xfile set stopwatch.vhd include_global true

This example adds stopwatch.vhd to the compile order list. To remove a file from the
list, use include_global false

Tcl Return
The new value of the specified property as a text string.

For More Information
% help xfile

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 381

Chapter 27: Tcl Reference

Xilinx Tcl Commands for Advanced Scripting
Xilinx® Tcl commands for advanced scripting use objects and collections. An object can
be any element in an ISE® project, like an instance, file, or process. Collections return
groups of objects, based on values that you assign to object and collection variables.

In most cases, the examples shown assume that a project has been created with the
project new command or a project has been opened with the project open
command. Project files are added with the xfile add command.

The following table summarizes the Xilinx Tcl commands for advanced scripting.

Commands Subcommands
globals (manipulate Xilinx global data) get

properties
set
unset

collection (create and manage a collection) append_to
copy
equal
foreach
get
index
properties
remove_from
set
sizeof

object (get object information) get
name
properties
type

search (search for matching design objects)

globals (manipulate Xilinx global data)
This command manipulates Xilinx® global data.

Syntax
% globals subcommand

Available subcommands are:
• get (get global property/data)
• set (set global property/data)
• properties (list global properties/data)
• unset (unset global property/data)

For More Information
For more information about a subcommand, type:
% help globals subcommand

globals get (get global proper ties/data)
This command returns the value of the specified global property.

Command Line Tools User Guide
382 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Syntax
% globals get property_name

globals is the Tcl command name.
get is the subcommand name.
property_name specifies the name of one of the global properties/data.

Example
% globals get display_type

This example returns the value of global property ’display_type’.

Tcl Return
The value of the specified property.

For More Information
% help globals

globals proper ties (list global proper ties)
This command lists the available global properties.

Syntax
% globals properties

globals is the Tcl command name.
properties is the subcommand name.

Example
% globals properties

This example returns the list of available global properties.

Tcl Return
The available globals properties as a Tcl list.

For More Information
% help globals

globals set (set global proper ties/data)
This command sets the value of the specified global property. If the property does not
exist, it is created.

Syntax
% globals set property_name property_value

globals is the Tcl command name.
set is the subcommand name.
property_name specifies the name of one of the global properties/data.
property_value specifies the value for property.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 383

Chapter 27: Tcl Reference

Example
% globals set display_type 1

This example sets the value of global property ’display_type’ to 1.

Tcl Return
The value of the specified property.

For More Information
% help globals

globals unset (unset global proper ties/data)
This command deletes the specified global property.

Syntax
% globals unset property_name

globals is the Tcl command name.

unset is the subcommand name.

property_name specifies the name of one of the global properties/data.

Example
% globals unset display_type

This example deletes the global property ’display_type’.

Tcl Return
The value of the specified property.

For More Information
% help globals

collection (create and manage a collection)
A collection is a group of Tcl objects, similar to a list, which is exported to the Tcl
interface. This command lets you create and manage the objects in a specified collection.

A collection is referenced in Tcl by a collection variable, which is defined with the set
command. Technically, the value of the collection variable is the collection.

Syntax
% collection subcommand

Command Line Tools User Guide
384 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Available subcommands are:
• append_to (add objects to a collection)
• copy (copy a collection)
• equal (compare two collections)
• foreach (iterate over elements in a collection)
• get (get collection property)
• index (extract the object)
• properties (list available collection properties)
• remove_from (remove objects from a collection)
• set (set a collection property)
• sizeof (show the number of objects in a collection)

For More Information
For more information about a subcommand, type:
% help collection subcommand

collection append_to (add objects to a collection)
This command adds objects to a collection. It treats a specified collection variable as
a collection and appends all of the objects returned from a search, or from another
collection, to the collection. If the collection variable does not exist, then it is created
when the command is executed.

Syntax
% collection append_to collection_variable objects_to_append
[-unique]

collection is the Tcl command name.
append_to is the subcommand name.
collection_variable specifies the name of the collection variable, which references the
collection. If the collection variable does not exist, then it is created.
objects_to_append specifies an object or a collection of objects to be added to the collection.
-unique optionally adds only objects that are not already in the collection. If the
-unique option is not used, then duplicate objects may be added to the collection.

Example
% collection append_to colVar [search * -type instance]

This example creates a new collection variable named colVar. The nested search
command returns a collection of all the instances in the current design. These instances
are objects that are added to the collection, referenced by the colVar collection variable.

Tcl Return
A collection of objects.

For More Information
• % help collection

• % help object

• % help search

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 385

Chapter 27: Tcl Reference

collection copy (copy a collection)
This command creates a duplicate of an existing collection. It should be used only
when two separate copies of a collection are needed. Example 1 shows how to create a
copy of a collection.

Alternatively, rather than copying the collection you can just have more than one
collection variable referencing the collection. In most cases, a second reference to a
collection is all that is needed, and ensures that the variables always reference the same
items. Example 2 shows how to reference a single collection from two variables.

Syntax
collection copy collection_variable

collection is the Tcl command name.
copy is the subcommand name.
collection_variable specifies the name of the collection to copy.

Example 1 — Create a Separate Collection
% set colVar_2 [collection copy $colVar_1]

This example creates the collection variable colVar_2. The nested collection copy
command makes a duplicate of the colVar_1 collection and assigns it to the colVar2
collection variable, making it a completely separate collection.

Example 2 — Two References to One Collection
% set colVar_1 [search * -type instance]

% set colVar_2 $colVar_1

This example creates a collection (colVar_2) that references another collection (colVar_1).
• The first command creates a collection assigned to the collection variable colVar_1.
• The second command creates a second collection variable, colVar_2, that references

the value of colVar_1.

Note There is still only one underlying collection referenced. Any changes made to
colVar_1 or colvar_2 will be visible in both collection variables.

Tcl Return
A new collection.

For More Information
• % help collection

• % help object

• % help search

collection equal (compare two collections)
This command compares the contents of two collections. Collections are considered
equal when the objects in both collections are the same. If the same objects are in both
collections, the result is 1. If the objects in the compared collections are different, then
the result is 0. By default, the order of the objects does not matter. Optionally, the
order_dependent option can be specified for the order of the objects to be considered.

Syntax
% collection equal colVar_1 colVar_2 [-order_dependent]

Command Line Tools User Guide
386 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

collection is the Tcl command name.
equal is the name of the collection sub command.
colVar_1 specifies the base collection for the comparison.
colVar_2 specifies the collection to compare with the base collection.
-order_dependent optionally specifies that the collections are considered different
when the order of the objects in both collections are not the same.

Note When two empty collections are compared, they are considered identical and
the result is 1.

Example
% set colVar_1 [search * -type instance]

% set colVar_2 [search /top/T* -type instance]

% collection equal $colVar_1 $colVar_2

This example compares the contents of two collections.
• The first command assign a collection of instances to the collection variable colVar_1.
• The second command assigns another collection of filtered instance names to the

collection variable colVar_2.
• The third command compares the two collections. The dollar sign ($) syntax is used

to obtain the values of the collection variables. In this case, the values of colVar_1
and colVar_2 to determine if they are equal.

Tcl Return
0 if the collections are not the same, 1 if the collections are the same.

For More Information
• % help collection

• % help object

• % help search

collection foreach (iterate over elements in a collection)
This command iterates over each object in a collection through an iterator variable. The
iterator variable specifies the collection to iterate over and the body specifies the set of
commands or script to apply at each iteration.

Syntax
% collection foreach iterator_variable collection_variable
{ body }

collection is the Tcl command name.
foreach is the subcommand name.
iterator_variable specifies the name of the iterator variable.
collection_variable specifies the name of the collection to iterate through.
body specifies a set of commands or script to execute at each iteration.

Caution! You cannot use the standard Tcl-supplied foreach command to iterate over
collections. You must use the Xilinx®-specific collection foreach command. Using the
Tcl-supplied foreach command may cause the collection to be deleted.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 387

Chapter 27: Tcl Reference

Example
% set colVar [search * -type instance]

% collection foreach itr $colVar {puts [object name $itr]}

This example iterates through the objects of a collection.
• The first command assigns a collection of instances to the colVar collection variable.
• The second line iterates through each object in the colVar collection, where itr is the

name of the iterator variable. Curly braces { } enclose the body, which is the script
that executes at each iteration. Note that the object name command is nested in the
body to return the value of the iterator variable, which is an instance in this case.

Tcl Return
An integer representing the number of times the script was executed

For More Information
• % help collection

• % help object

• % help search

collection get (get collection proper ty)
This command returns the value of the specified collection property. Collection
properties and values are assigned with the collection set command.

Syntax
% collection get property_name

collection is the Tcl command name.
get is the subcommand name.
property_name specifies the name of the property you wish to get the value of. Valid
property names for the collection get command are display_line_limit and display_type.

Note See also the collection set command.

Example
% collection get display_type

This example gets the current setting of the display_type property.

Tcl Return
The set value of the specified property.

For More Information
• % help collection

• % help object

• % help search

collection index (extract a collection object)
Given a collection and an index into it, this command extracts the object at the specified
index and returns the object, if the index is in range. The base collection is unchanged.

The range for an index is zero (0) to one less (-1) the size of the collection obtained with
the collection sizeof command.

Command Line Tools User Guide
388 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

Syntax
% collection index collection_variable index_value

collection is the Tcl command name.
index is the subcommand name.
collection_variable specifies the collection to be used for index.
index_value specifies the index into the collection. Index values are 0 to one minus the
size of the collection. Use the collection sizeof command to determine the size of the
collection.

Note Xilinx®-specific Tcl commands that create a collection of objects do not impose a
specific order on the collection, but they do generate the objects in the same, predictable
order each time. Applications that support sorting collections, can impose a specific
order on a collection.

Example
% set colVar [search * -type instance]

% set item [collection index $colVar 2]

% object name $item

This example extracts the third object in the collection of instances.
• The first command creates a collection variable named colVar. The nested search

command defines the value of the collection for colVar, which in this case is all
of the instances in the current design.

• The second command creates a variable named item. The nested collection index
command obtains the third object (starting with index 0, 1, 2 . . .) in the given
collection.

• The last command returns the value of the item variable, which is the specified
value of index.

Tcl Return
The object at the specified index.

For More Information
• % help collection

• % help object

• % help search

collection proper ties (list availab le collection proper ties)
The collection properties command displays a list of the supported properties for all
collections in the current ISE® project. You can set the value of any property with the
collection set command.

Syntax
% collection properties

collection is the Tcl command name.
properties is the subcommand name.

There are two collection properties: display_line_limit and display_type. These
properties are supported with the collection get and collection set commands.

Note See the collection get command for a list of available properties.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 389

Chapter 27: Tcl Reference

Example
% collection properties

This example displays a list of available collection properties. It returns
display_line_limit and display_type.

Tcl Return
A list of available collection properties.

For More Information
• % help collection

• % help object

• % help search

collection remove_fr om (remove objects from a collection)
This command removes objects from a specified collection, modifying the collection in
place. If you do not wish to modify the existing collection, first use the collection copy
command to create a duplicate of the collection.

Syntax
% collection remove_from collection_variable objects_to_remove

collection is the Tcl command name.
remove_from is the subcommand name.
collection_variable specifies the name of the collection variable.
objects_to_remove specifies a collection of objects, or the name of an object that you wish
to remove from the collection.

Example
% set colVar_1 [search * -type instance]

% set colVar_2 [search /stopwatch/s* -type instance]

% set colVar_3 [collection remove_from colVar_1 $colVar_2]

In this example, the objects in colVar_2 are removed from colVar_1.
• The first command creates the collection variable colVar_1.
• The second command creates the collection variable colVar_2.
• The last command creates a third collection variable, colVar_3 that contains all of

the instances in colVar_1, but no instances in colVar_2.

Tcl Return
The original collection modified by removed elements.

For More Information
• % help collection

• % help object

• % help search

Command Line Tools User Guide
390 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

collection set (set the proper ty for all collections)
This command sets the specified property for all collection variables in the current
ISE® project.

Syntax
% collection set property_name property_value

collection is the Tcl command name.
set is the subcommand name.
property_name is the property name for all of the collection variables in the current project.
property_value is the property value for all of the collection variables in the current project.

There are two available property settings for the collection set command
• display_line_limit - specifies the number of lines that can be displayed by a

collection variable. This property setting is useful for very large collections, which
may have thousands, if not millions of objects. The default value for this property is
100. The minimum value is 0. There is no maximum value limit for this property.

• display_type - instructs Tcl to include the object type in the display of objects
from any specified collection variable. Values for this property are true and false.
By default, this option is set to false, which means object types are not displayed.
See the example below.

Example
% collection set display_type true

This example sets the property name and value for all collection variables in the project,
where display_type is the name of the property setting and true is the value for the
property.

Tcl Return
The value of the property.

For More Information
• % help collection

• % help object

• % help search

collection sizeof (show the number of objects in a collection)
This command returns the number of objects in the specified collection.

Syntax
% collection sizeof collection_variable

collection is the Tcl command name.
sizeof is the subcommand name.
collection_variable specifies the name of the collection for Tcl to return the size of.

Example
% collection sizeof $colVar

This example returns the size of the collection, which is referenced by the colVar
collection variable.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 391

Chapter 27: Tcl Reference

Tcl Return
An integer representing the number of items in the specified collection.

For More Information
• % help collection

• % help object

• % help search

object (get object inf ormation)
This command returns the name, type, or property information of any Xilinx® Tcl object
in the current ISE® project.

You can specify a single object or an object from a collection of objects.

Syntax
% object subcommand

Available subcommands are:
• get (get object properties)
• name (name of the object)
• properties (list object properties)
• type (type of object)

For More Information
For more information about a subcommand, type:
% help object subcommand

object get (get object proper ties)
The command returns the value of the specified property.

Syntax
% object get obj property_name

object is the Tcl command name.
get is the subcommand name.
obj specifies the object to get the property of.
property_name specifies the name of one of the properties of an object.

The properties of an object vary depending on the type of object. Use the object
properties command to get a list of valid properties for a specific object.

Example
% set colVar [search * -type instance]
% collection foreach obj $colVar {

set objProps [object properties $obj]
foreach prop $objProps {

puts [object get $obj $prop]
}

}

Command Line Tools User Guide
392 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

This example first runs a search to create a collection of all instances in the project. The
second statement iterates through the objects in the collection. For each object, the list of
available properties on the object are obtained by the object properties command. Then,
the value of each property for each of the objects is returned.

Tcl Return
The value of the specified property.

For More Information
• % help object

• % help collection

• % help search

object name (returns name of the object)
This command returns the name of any Xilinx® object.

Syntax
% object name obj

object is the Tcl command name.
name is the subcommand name.
obj object whose name is to be returned.

Example
% set colVar [search * -type instance]

% object name [collection index $colVar 1]

This example returns the name of the second object in the colVar collection.
• The first command creates the colVar collection variable. The nested search

command defines the value of the collection variable to be all instances in the
current project.

• The second command gets the name of the second object in the collection. The
collection index command defines which object to get, where $colVar is the collection
from which to get the object. One (1) specifies the index into the collection. Since
index values start at 0 (zero), this returns the name of the second object in the
collection.

Note See the collection index command for more information.

Tcl Return
The name of the object as a text string.

For More Information
• % help object

• % help collection

• % help search

object proper ties (list object proper ties)
The object properties command lists the available properties for the specified object.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 393

Chapter 27: Tcl Reference

Syntax
% object properties obj [-descriptors]

object is the Tcl command name.

properties is the subcommand name.

obj specifies the object to list the properties of.

-descriptors specifies that the command should return a collection of property
descriptors on which users can iterate through to get more information on each property.
If not specified, the command returns a list of property names as a TCL List.

Example 1
% set colVar [search * -type partition]
% collection foreach obj $colVar {

set objProps [object properties $obj]
foreach prop $objProps

puts [object get $obj $prop]
}

}

This example first runs a search to create a collection of objects. The second statement
iterates through the objects in the collection. For each object, a list of available properties
for the object are obtained with the object properties command. Then, the value of
each property is returned for each object.

Example 2
% set colVar [search * -type partition]
% set partition [collection index $colVar 1]
% set propertyDescritpors [object properties $partition -descriptors]
% collection foreach propDescr $propertyDescritpors {

puts "name : [object get $propDescr name]"
puts "type : [object get $propDescr type]"
puts "is_read_only : [object get $propDescr is_read_only]"
puts "allowable_values : [object get $propDescr allowable_values]"
puts "default : [object get $propDescr default]"
puts "units : [object get $propDescr units]"
puts "drivers : [object get $propDescr drivers]"
puts "description : [object get $propDescr description]"

}

This example returns a collection of property descriptors. Property descriptors are
objects which describe about a property, using properties.

You can iterate through these property descriptors to get more information about the
property it is describing.

Command Line Tools User Guide
394 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

The following information can be retrieved from a property descriptor:
• The name of a property by specifying property ’name’.
• The property type by specifying property ’type’
• Find if a property is read only by specifying property ’is_read_only’
• The possible values of a property by specifying property ’allowable_values’
• The default value of a property by specifying property ’default’
• The units specification of a property by specifying property ’units’
• A list of property names on which this property depends by specifying property

’drives’
• A description of a property by specifying property ’description’

Tcl Return
Collection of property descriptors if -descriptors switch is specified, otherwise is returns
a Tcl list of property names.

For More Information
• % help object

• % help collection

• % help search

object type (returns the type of object)
This command returns the type of any Xilinx® object.

Syntax
% object type obj

object is the Tcl command name.
type is the subcommand name.
obj specifies the object to return the type of. The object name will always be a Tcl variable.
The set command is used to create a Tcl variable, as shown in the following example.

Example
% set colVar [search * -type instance]

% object type [collection index $colVar 1]

This example returns the object type of the second object in the collection.
• The first command creates the colVar collection variable. The nested search

command defines the value of the collection variable to be all instances in the
current project.

• The second command gets the name of the second object in the collection. The
collection index command defines which object to get, where $colVar is the
collection from which to get the object. One (1) specifies the index into the collection.
Since index values start at 0 (zero), this returns the type of the second object in
the collection.

Note See the collection index command for more information.

Tcl Return
The object type as a text string.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 395

Chapter 27: Tcl Reference

For More Information
• % help object

• % help collection

• % help search

search (search for matc hing design objects)
This command is used to search for specific design objects that match a specified pattern.

Syntax
% search { pattern | expression } [[-matchcase] [-exactmatch]
[-regexp]] | [-exp] [-type object_type] [-in
{project|collection}]

search is the Tcl command name.
pattern or expression is a string. When -exp is used, it is an expression that specifies the
searching criteria using Xilinx® search expression syntax. When -exp is not used, it is a
pattern that is used to match object names.
-matchcase is meaningful only when -exp is not used. It specifies that the names of
the objects to be searched for should match pattern in a case-sensitive way.
-exactmatch is meaningful only when -exp is not used. It specifies that the names of
the objects to be searched for should match pattern exactly.
-regexp is meaningful only when -exp is not used. It specifies that pattern is a regular
expression. By default, pattern is treated as a simple string that can contain wildcard
characters, e.g. "*_ccir_*".
-exp specifies that the searching criteria are expressed in expression using search
expression syntax. Search expression enables searching for objects by properties.
-type object_type specifies what type of objects to search for. If a project is loaded,
supported types can be: file, instance, and lib_vhdl. If a device is loaded, supported
types can be: belsite, io_standard, site and tile.

Note When the type is “file,” project sources that you added explicitly are searched
by default. To also search files referenced by ’include statements, set the property
"Consider Include Files in Search" to TRUE before you run the search command as
follows: project set "Consider Include Files in Search" true

-in {project|collection} specifies the scope of the search. If you use -in or -in
project , searching is within the current project. If you use -in valid_collection ,
searching is within the specified collection.

Example 1
% search "/stopwatch" -type instance

In this example, the search command is used to find all instances in the design.

Example 2
% search * -type file

In this example, the search command is used to find a list of all the source files
contained in the project.

Tcl Return
A collection of objects that match the search criteria. If no matches are found, an empty
collection is returned.

Command Line Tools User Guide
396 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

For More Information
For ease of use, the more detailed search documentation has been split into a number of
sections. For help on a specific section, type:

% help search section

The following sections are available:

• examples (examples on how to use search command)

• expressions (an overview of search expression)

• operators (a list of operators supported by search expression)

• functions (a list of functions supported by search expression)

• approx (an overview of function - approx)

• contains (an overview of function - contains)

• exists (an overview of function - exists)

• glob (an overview of function - glob)

• property (an overview of function - property)

• quote (an overview of function - quote)

• regexp (an overview of function - regexp)

• size (an overview of function - size)

• type (an overview of function - type)

• contains_usage (detailed usage of function - contains)

• glob_usage (detailed usage of function - glob)

• regexp_usage (detailed usage of function - regexp)

Example Tcl Scripts
This chapter includes the following sections of sample Tcl scripts.

• Sample Standard Tcl Scripts

• Sample Xilinx Tcl Script for General Use

• More Sample Xilinx Tcl Scripts

You can run these example Tcl scripts the following ways:

• Enter each statement interactively at the xtclsh prompt (%). This is a good way to
understand and think about each command and observe the outputs as you go.

• You can access the xtclsh prompt (%) from the command line by typing xtclsh , or
from the Tcl console in Project Navigator.

• You can save the statements in a script file with a .tcl extension. To run the Tcl
script, type the following from the xtclsh prompt (%):

% source <script_name> .tcl

• You can also run the script directly from the command line by running one instance
of the Tcl shell followed by the script name:

% xtclsh <script_name> .tcl

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 397

Chapter 27: Tcl Reference

Sample Standar d Tcl Scripts
The following Tcl scripts illustrate basic functions in the standard Tcl language. These
scripts are intended for beginners who are getting started on basic Tcl scripting. By
learning more standard Tcl, you will have more capabilities modifying the above Xilinx®
Tcl scripts to customize them to your individual designs. These scripts can be run from
within any standard Tcl shell, or the Xilinx xtclsh.

Some of these scripts are defined as procedures. You can define a procedure, then after
it is defined you can run it again and again just by typing the procedure name. For
example, the first script below is called proc Factorial{n} . After you type the
procedure in a Tcl shell (or enter the script using the source command), you can run it
again within the Tcl shell just by typing its name, in this case:

% Factorial <number> ; # where <number> is any input to the
function

The first script is a procedure called Factorial. You will recognize it as the math Factorial
function. It takes one input, as you can see from the {n} following the proc statement.
The open curly brace after the proc statement indicates the beginning of the set of
commands that make up the procedure, and looking to the end, you can see the final
result is a variable called solution.

The procedure is made up of a single loop that runs "n" times while the variable
"multiplier" is incremented from 1 up to n. Each time through the loop, the solution gets
larger as it is multiplied by the numbers from 1 to n. The final solution is 1 * 2 * 3 * ... * n.

proc Factorial{n} {
set solution 1;
set multiplier 1;
while {$multiplier <= $n } {
set solution [expr $multiplier * $solution];
set multiplier [expr $multiplier + 1];
}
return $solution;
}

It is also possible to write the above function recursively:

proc Factorial{n} {
if {$n <= 1}
{return 1;}
else { return [expr $n * [Factorial [expr $n - 1]]]
}
}

Command Line Tools User Guide
398 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

The following script is a procedure with 2 arguments. It is a simple representation of
the Linux command-line grep program, which searches a file’s contents for a specific
pattern. The 2 arguments to this procedure are the pattern and the file(s) being searched
for that pattern.

proc greppy {pattern fileexp} {# procedure with {arguments}
use glob: to access filenames that match a pattern
foreach filename [glob $fileexp] {
if {[file type $filename] eq "file"} {# file or directory?
puts "--- Reading $filename ---"

opens the filename and returns its file handle.
You need the file handle to read from a file and/or write into it.

set fh [open $filename]
reads in the whole file into a variable!# Illustration of a benefit of Tcl’s typeless variables
set file_contents [read $fh]
close $fh# close the file - by using its file handle.

look for \n (end of line), and split up the lines based on
the newlines. One line at a time is assigned to the variable “line”
foreach line [split $file_contents \n] {

evaluate regular expression, comparing the pattern you passed in on the command line to each line in the file.
if [regexp $pattern $line] {

puts $line
}
}
}
}

}

The next script is a procedure to strip the filename off the end of a fully-qualified
pathname. This script utilizes some of the many string-manipulation functions provided
by Tcl. There are several ways to write this procedure, here is one that uses these string
manipulation functions:

[string last "/" $fullfile]; # position of last slash in the string

[string length $fullfile]; # give string length

[string range $fullfile a b]; # new string from position a to b

consider the input: fullfile is "C:/designs/proj1/top.vhd"

Calling the following procedure with the full path name as its argument:

% getfname C:/designs/proj1/top.vhd

will return just the filename: top.vhd.

proc getfname {fullfile}{
set start [expr [string last “/” $fullfile] + 1]
set end [string length $fullfile]
return [string range $fullfile $start $end]

}

You can consolidate the 3 commands of the procedure into one by omitting the
intermediate variable assignments:

proc getfname {fullfile}{
return [string range $fullfile \

[expr [string last “/” $fullfile] + 1] [string length $fullfile]]
}

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 399

Chapter 27: Tcl Reference

Sample Tcl Script for General Use
The following script goes through a typical design process. It creates a new project, then
specifies project-level properties such as device and family. Source design files are
added, and process properties are set to control the options of the implementation tools.
Finally, the implementation process is run. Please examine the inline comments in this
script to understand the different sections and the commands being used.

create and open the project and set project-level properties
project new watchvhd.xise
project set family spartan3e
project set device xc3s100e
project set package vq100
project set speed -5
add all the source HDLs and ucf
xfile add stopwatch.vhd statmatch.vhd cnt60.vhd dcm1.vhd decode.vhd smallcntr.vhd
xfile add tenths.vhd hex2led.vhd
xfile add watchvhd.ucf
set batch application options :
1. set synthesis optimization goal to speed
2. ignore any LOCs in ngdbuild
3. perform timing-driven packing
4. use the highest par effort level
5. set the par extra effort level
6. pass "-instyle xflow" to the par command-line
7. generate a verbose report from trce
8. create the IEEE 1532 file during bitgen
project set "Optimization Goal" Speed
project set "Use LOC Constraints" false
project set "Place & Route Effort Level (Overall)" High
project set "Extra Effort (Highest PAR level only)" "Continue on Impossible"
project set "Report Type" "Verbose Report" -process "Generate Post-Place & Route Static Timing"
project set "Create IEEE 1532 Configuration File" TRUE
run the entire xst-to-trce flow
process run "Implement Design"
close project
project close
open project again
project open watchvhd
close project
project close

More Sample Xilinx Tcl Scripts
The following Tcl scripts illustrate some short, simple functions using the Xilinx® Tcl
commands. Run these procedures within the Xilinx xtclsh with an ISE® project open.

Command Line Tools User Guide
400 www.xilinx.com UG628 (v 14.5) March 20, 2013

Chapter 27: Tcl Reference

The first script is a useful way to print out (either to your screen or to a file) a list of your
current design properties for any processes you want to list. First, set up your own
"Apps_list" with the names of the Xilinx processes whose properties you want to list.
Next, this script opens a file for writing (the filename is options.tcl) and then it loops
through each process in the Apps_list, getting a list of properties for each process. A
second loop goes through each property and gets the value of each, printing it to the file.
After closing the file, you can open the options.tcl file in an editor, or print it as a
customized report of properties and their values.

set Apps_list {"Synthesize - XST"\
"Translate"\
"Map"\
"Generate Post-Map Static Timing"\
"Generate Post-Map Simulation Model"\
"Place & Route"\
"Generate Post-Place & Route Static Timing"\
"Generate Post-Place & Route Simulation Model"\
"Back-Annotate Pin Locations"\
"Generate Programming File"
}
set fp [open "options.tcl" "w"]
foreach ISE_app $Apps_list {
puts $fp "# ****** Properties for < $ISE_app > *********"
foreach prop [project properties -process $ISE_app] {
set val [project get "$prop" -process "$ISE_app"]
if {$val != "" } {
puts $fp "project set \"$prop\" \"$val\" -process \"$ISE_app\""
}
}
}
close $fp

The following script shows how you can use the standard Tcl catch command to
capture errors before they are caught by the Tcl shell. For instance, you may want to
run a long script without stopping, even if intermediate steps within the script have
errors. This script also uses the Tcl time command to record the elapsed clock time
of the process.

Run XST, catch any errors, and record the runtime
if { [catch { time {process run "Synthesize - XST"} } synthTime] } {

puts “Synthesis run failed to launch.”
}
Synthesis completed, see if it succeeded and write out the run time.
else {

set my_status [process get “Synthesize - XST” status]
if { ($my_status == “up_to_date”) ||

($my_status == “warnings”) } {
puts “Synthesis run completed successfully, runtime: $synthTime”

} else {
puts “Synthesis run failed, runtime: $synthTime”

}
}

The following individual commands may be useful to add to your Tcl scripts when
running designs through Implement.

Regenerate Core for a particular instance
process run "Regenerate Core" -instance myCore
Set up properties to generate post place static timing report
project set "report type" "Verbose Report" \ process "Generate Post-Place & Route Static Timing"
Set up properties to create the source control friendly version # of the bit file: the .bin file
The .bin file has the same internals, but no header so a # simple diff works.
project set "Create Bit File" "true" project set "Create Binary Configuration File" "true"

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 401

Command Line Tools User Guide
402 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix A

ISE Design Suite Files
This appendix gives an alphabetic listing of the files used by the Xilinx® ISE® Design
Suite and associated command line tools.

Name Type
Produced
By Description

BGN ASCII BitGen Report file containing information about a
BitGen run

BIN Binary BitGen Configuration data only

BIT Data BitGen Download bitstream file for devices
containing all of the configuration
information from the NCD file

BLD ASCII NGDBuild Report file containing information about an
NGDBuild run, including the subprocesses
run by NGDBuild

DATA C File TRACE File created with the -stamp option
to TRACE that contains timing model
information

DC ASCII Synopsys
FPGA
Compiler

Synopsys setup file containing constraints
used by ISE Design Suite and the
associated command line tools.

DLY ASCII PAR File containing delay information for each
net in a design

DRC ASCII BitGen Design Rule Check file produced by BitGen

EBC ASCII BitGen Configuration data as would be read
back during SEU readback, including pad
frames. The EBC file has no commands in
it, and is not the same as the BIT file.

EBD ASCII BitGen Mask data that indicates which bits of the
EBC file are essential to the circuitry of
the design. The EBD file is the same size
as the EBC file; the bits have one-to-one
correspondence.

EDIF (various
file extensions)

ASCII CAE vendors
EDIF 2 0 0
netlist writer.

EDIF netlist. The ISE Design Suite and
associated command line tools will accept
an EDIF 2 0 0 Level 0 netlist file

EDN ASCII NGD2EDIF Default extension for an EDIF 2 0 0 netlist
file

ELF ASCII Used for
NetGen

This file populates the Block RAMs
specified in the .bmmfile.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 403

Appendix A: ISE Design Suite Files

Name Type
Produced
By Description

EPL ASCII FPGA Editor FPGA Editor command log file. The
EPL file keeps a record of all FPGA
Editor commands executed and output
generated. It is used to recover an aborted
FPGA Editor session

EXO Data PROMGen PROM file in Motorola EXORMAT format

FLW ASCII Provided with
software

File containing command sequences for
XFLOW programs

GYD ASCII CPLDFit CPLD guide file

HEX Hex PROMGen
Command

Output file from PROMGen that contains a
hexadecimal representation of a bitstream

IBS ASCII IBISWriter
Command

Output file from IBISWriter that consists of
a list of pins used by the design, the signals
internal to the device that connect to those
pins, and the IBIS buffer models for the
IOBs connected to the pins

INI ASCII Xilinx
software

Script that determines what FPGA Editor
commands are performed when FPGA
Editor starts up

ISC ASCII BitGen Configuration data in IEEE 1532 format

JED JEDEC CPLDFit Programming file to be downloaded to a
device

LOG ASCII XFLOW

TRACE

Log file containing all the messages
generated during the execution of XFLOW
(xflow.log)

TRACE (macro.log)

LL ASCII BitGen Optional ASCII logic allocation file with
a .ll extension. The logic allocation file
indicates the bitstream position of latches,
flip-flops, and IOB inputs and outputs.

MEM ASCII User (with
text editor)

User-edited memory file that defines the
contents of a ROM

MCS Data PROMGen PROM-formatted file in the Intel MCS-86
format

MDF ASCII MAP A file describing how logic was
decomposed when the design was
mapped. The MDF file is used for guided
mapping.

MOD ASCII TRACE File created with the -stamp option
in TRACE that contains timing model
information

MRP ASCII MAP MAP report file containing information
about a technology mapper command run

MSD ASCII BitGen Mask information for verification only,
including pad words and frames.

MSK Data BitGen File used to compare relevant bit locations
when reading back configuration data
contained in an operating Xilinx device

Command Line Tools User Guide
404 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix A: ISE Design Suite Files

Name Type
Produced
By Description

NAV XML NGDBuild Report file containing information about an
NGDBuild run, including the subprocesses
run by NGDBuild. From this file, the user
can click any linked net or instance names
to navigate back to the net or instance in
the source design.

NCD Data MAP, PAR,
FPGA Editor

Flat physical design database correlated to
the physical side of the NGD in order to
provide coupling back to the users original
design

NCF ASCII CAE Vendor
toolset

Vendor-specified logical constraints files

NGA Data NetGen Back-annotated mapped NCD file

NGC Binary XST Netlist file with constraint information.

NGD Data NGDBuild Native Generic Database (NGD) file. This
file contains a logical description of the
design expressed both in terms of the
hierarchy used when the design was first
created and in terms of lower-level Xilinx
primitives to which the hierarchy resolves.

NGM Data MAP File containing all of the data in the input
NGD file as well as information on the
physical design produced by the mapping.
The NGM file is used for back-annotation.

NGO Data Netlist
Readers

File containing a logical description of the
design in terms of its original components
and hierarchy

NKY Data BitGen Encryption key file

NLF ASCII NetGen NetGen log file that contains information
on the NetGen run

NMC Binary FPGA Editor Xilinx physical macro library file
containing a physical macro definition that
can be instantiated into a design

OPT ASCII XFLOW Options file used by XFLOW

PAD ASCII PAR File containing a listing of all I/O
components used in the design and their
associated primary pins

PAR ASCII PAR PAR report file containing execution
information about the PAR command
run. The file shows the steps taken as the
program converges on a placement and
routing solution

PCF ASCII MAP, FPGA
Editor

File containing physical constraints
specified during design entry (that is,
schematics) and constraints added by the
user

PIN ASCII NetGen Cadence signal-to-pin mapping file

PNX ASCII CPLDFit File used by the IBISWriter program
to generate an IBIS model for the
implemented design.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 405

Appendix A: ISE Design Suite Files

Name Type
Produced
By Description

PRM ASCII PROMGen File containing a memory map of a PROM
file showing the starting and ending
PROM address for each BIT file loaded

RBA ASCII BitGen Readback commands, rather than
configuration commands, and expected
readback data where the configuration
data would normally be.

RBB Binary BitGen Readback commands, rather than
configuration commands, and expected
readback data where the configuration
data would normally be.

RBD ASCII BitGen Expected readback data only, including
pad words and frames. No commands are
included.

RBT ASCII BitGen Rawbits" file consisting of ASCII ones
and zeros representing the data in the
bitstream file

RPT ASCII PIN2UCF Report file generated by PIN2UCF when
conflicting constraints are discovered. The
name is pinlock.rpt.

RCV ASCII FPGA Editor FPGA Editor recovery file

SCR ASCII FPGA Editor
or XFLOW

FPGA Editor or XFLOW command script
file

SDF ASCII NetGen File containing the timing data for a
design. Standard Delay Format File

SVF ASCII NetGen Assertion file written for Formality
equivalency checking tool

TCL ASCII User (with
text editor)

Tcl script file

TDR ASCII DRC Physical DRC report file

TEK Data PROMGen PROM-formatted file in Tektronixs
TEKHEX format

TV ASCII NetGen Verilog test fixture file

TVHD ASCII NetGen VHDL testbench file

TWR ASCII TRACE Timing report file produced by TRACE

TWX XML TRACE Timing report file produced by TRACE.
From this file, the user can click any linked
net or instance names to navigate back to
the net or instance in the source design.

UCF ASCII User (with
text editor)

User-specified logical constraints file

URF ASCII User (with
text editor)

User-specified rules file containing
information about the acceptable netlist
input files, netlist readers, and netlist
reader options

V ASCII NetGen Verilog netlist

VHD ASCII NetGen VHDL netlist

VM6 Design CPLDFit Output file from CPLDFit

Command Line Tools User Guide
406 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix A: ISE Design Suite Files

Name Type
Produced
By Description

VXC ASCII NetGen Assertion file written for Conformal-LEC
equivalence checking tool

XCT ASCII PARTGen File containing detailed information about
architectures and devices

XTF ASCII Previous
releases
of Xilinx
software

Xilinx netlist format file

XPI ASCII PAR File containing PAR run summary

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 407

Command Line Tools User Guide
408 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix B

EDIF2NGD and NGDBuild
This appendix describes the netlist reader program, EDIF2NGD, and how this program
interacts with NGDBuild.

EDIF2NGD Overview
The EDIF2NGD program lets you read an Electronic Data Interchange Format (EDIF) 2 0
0 file into the Xilinx® toolset. EDIF2NGD converts an industry-standard EDIF netlist to
the Xilinx-specific NGO file format. The EDIF file includes the hierarchy of the input
schematic. The output NGO file is a binary database describing the design in terms of
the components and hierarchy specified in the input design file. After you convert the
EDIF file to an NGO file, you run NGDBuild to create an NGD file, which expands the
design to include a description reduced to Xilinx primitives.

EDIF2NGD Design Flow

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 409

Appendix B: EDIF2NGD and NGDBuild

EDIF2NGD Device Suppor t
This program is compatible with the following device families:

• 7 series and Zynq™

• Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6

• Virtex®-4, Virtex-5, and Virtex-6

• CoolRunner™ XPLA3 and CoolRunner-II

• XC9500 and XC9500XL

EDIF2NGD Syntax
The following command reads your EDIF netlist and converts it to an NGO file:

edif2ngd [options] edif_file ngo_file

• options can be any number of the EDIF2NGD options listed in EDIF2NGD Options.
Enter options in any order, preceded them with a dash (minus sign on the keyboard)
and separate them with spaces.

• edif_file is the EDIF 2 0 0 input file to be converted. If you enter a file name with
no extension, EDIF2NGD looks for a file with the name you specified and a .edn
extension. If the file has an extension other than .edn , you must enter the extension
as part of edif_file.

Note For EDIF2NGD to read a Mentor Graphics EDIF file, you must have installed
the Mentor Graphics software component on your system. Similarly, to read a
Cadence EDIF file, you must have installed the Cadence software component.

• ngo_file is the output file in NGO format. The output file name, its extension, and its
location are determined in the following ways:

– If you do not specify an output file name, the output file has the same name as
the input file, with an .ngo extension.

– If you specify an output file name with no extension, EDIF2NGD appends the
.ngo extension to the file name.

– If you specify a file name with an extension other than .ngo , you get an error
message and EDIF2NGD does not run.

– If you do not specify a full path name, the output file is placed in the directory
from which you ran EDIF2NGD.

If the output file exists, it is overwritten with the new file.

Command Line Tools User Guide
410 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix B: EDIF2NGD and NGDBuild

EDIF2NGD Input Files
EDIF2NGD uses the following files as input:
• EDIF file -This is an EDIF 2 0 0 netlist file. The file must be a Level 0 EDIF netlist, as

defined in the EDIF 2 0 0 specification. The Xilinx toolset can understand EDIF files
developed using components from any of these libraries:
– Xilinx Unified Libraries (described in the Libraries Guides)
– XSI (Xilinx Synopsys Interface) Libraries
– Any Xilinx physical macros you create

Note Xilinx tools do not recognize Xilinx Unified Libraries components defined
as macros; they only recognize the primitives from this library. The third-party
EDIF writer must include definitions for all macros.

• NCF file - This Netlist Constraints File (NCF) is produced by a vendor toolset and
contains constraints specified within the toolset. EDIF2NGD reads the constraints in
this file and adds the constraints to the output NGO file.
EDIF2NGD reads the constraints in the NCF file if the NCF file has the same base
name as the input EDIF file and an .ncf extension. The name of the NCF file does
not have to be entered on the EDIF2NGD command line.

EDIF2NGD Output Files
The output of EDIF2NGD is an NGO file, which is a binary file containing a logical
description of the design in terms of its original components and hierarchy.

EDIF2NGD Options
This section describes the EDIF2NGD command line options.
• -a (Add PADs to Top-Level Port Signals)
• -aul (Allow Unmatched LOCs)
• -f (Execute Commands File)
• -intstyle (Integration Style)
• -l (Libraries to Search)
• -p (Part Number)
• -r (Ignore LOC Constraints)

-a (Add PADs to Top-Level Por t Signals)
This option adds PAD properties to all top-level port signals. This option is necessary
if the EDIF2NGD input is an EDIF file in which PAD symbols were translated into
ports. If you do not specify -a for one of these EDIF files, the absence of PAD instances
in the EDIF file causes EDIF2NGD to read the design incorrectly. Subsequently, MAP
interprets the logic as unused and removes it.

Syntax
-a

In all Mentor Graphics and Cadence EDIF files, PAD symbols are translated into ports.
For EDIF files from either of these vendors, the -a option is set automatically; you do
not have to enter the -a option on the EDIF2NGD command line.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 411

Appendix B: EDIF2NGD and NGDBuild

-aul (Allo w Unmatc hed LOCs)
By default (without the -aul option), EDIF2NGD generates an error if the constraints
specified for pin, net, or instance names in the NCF file cannot be found in the design. If
this error occurs, an NGO file is not written. If you enter the -aul option, EDIF2NGD
generates a warning instead of an error for LOC constraints and writes an NGO file.

You may want to run EDIF2NGD with the -aul option if your constraints file includes
location constraints for pin, net, or instance names that have not yet been defined in the
HDL or schematic. This allows you to maintain one version of your constraints files for
both partially complete and final designs.

Syntax
-aul

Note When using this option, make sure you do not have misspelled net or instance
names in your design. Misspelled names may cause inaccurate placing and routing.

-f (Execute Commands File)
This option executes the command line arguments in the specified command_file.

Syntax
-f command_file

For more information on the -f option, see -f (Execute Commands File) in the
Introduction chapter.

-intstyle (Integration Style)
This option limits screen output, based on the integration style that you are running, to
warning and error messages only.

Syntax
-intstyle ise|xflow|silent

When using -intstyle , one of three modes must be specified:
• -intstyle ise indicates the program is being run as part of an integrated design

environment.
• -intstyle xflow indicates the program is being run as part of an integrated

batch flow.
• -intstyle silent limits screen output to warning and error messages only.

Note -intstyle is automatically invoked when running in an integrated environment
such as Project Navigator or XFLOW.

-l (Libraries to Search)
This option specifies a library to search when determining what library components
were used to build the design. This information is necessary for NGDBuild, which must
determine the source of the design components before it can resolve the components to
Xilinx® primitives.

Syntax
-l libname

Command Line Tools User Guide
412 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix B: EDIF2NGD and NGDBuild

You may specify multiple -l options on the command line, but Each instance must be
preceded with -l . For example, -l xilinxun synopsys is not acceptable, while -l
xilinxun -l synopsys is acceptable.

The allowable entries for libname are the following.
• xilinxun (For Xilinx Unified library)
• synopsys

Note You do not have to enter xilinxun with a -l option. The Xilinx tools automatically
access these libraries. You do not have to enter synopsys with a -l option if the EDIF
netlist contains an author construct with the string Synopsys. In this case, EDIF2NGD
automatically detects that the design is from Synopsys.

-p (Part Number)
This option specifies the part into which your design is implemented.

Note If you do not specify a part when you run EDIF2NGD, you must specify one
when you run NGDBuild.

Syntax
-p part number

part_numbermust be a complete Xilinx® part name including device, package and speed
information (example: xc4vlx60-10- ff256).

Note For syntax details and examples, see -p (Part Number) in the Introduction chapter.

-r (Ignore LOC Constraints)
This option filters out all location constraints (LOC=) from the design. If the output file
already exists, it is overwritten with the new file.

Syntax
-r

NGDBuild
NGDBuild performs all the steps necessary to read a netlist file in EDIF format and create
an NGD file describing the logical design. The NGD file resulting from an NGDBuild
run contains both a logical description of the design reduced to NGD primitives and a
description in terms of the original hierarchy expressed in the input netlist. The output
NGD file can be mapped to the desired device family.

This program is compatible with the following device families:
• 7 series and Zynq™
• Spartan®-3, Spartan-3A, Spartan-3E, and Spartan-6
• Virtex®-4, Virtex-5, and Virtex-6
• CoolRunner™ XPLA3 and CoolRunner-II
• XC9500 and XC9500XL

Conver ting a Netlist to an NGD File
The following figure shows the NGDBuild conversion process.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 413

Appendix B: EDIF2NGD and NGDBuild

NGDBuild and the Netlist Readers

NGDBuild performs the following steps to convert a netlist to an NGD file:
1. Reads the source netlist

To perform this step, NGDBuild invokes the Netlist Launcher (Netlister), a part of
the NGDBuild software which determines the type of the input netlist and starts the
appropriate netlist reader program. If the input netlist is in EDIF format, the Netlist
Launcher invokes EDIF2NGD. If the input netlist is in another format that the
Netlist Launcher recognizes, the Netlist Launcher invokes the program necessary
to convert the netlist to EDIF format, then invokes EDIF2NGD. The netlist reader
produces an NGO file for the top-level netlist file.
If any subfiles are referenced in the top-level netlist (for example, a PAL description
file, or another schematic file), the Netlist Launcher invokes the appropriate netlist
reader for each of these files to convert each referenced file to an NGO file.
The Netlist Launcher is described in Netlist Launcher (Netlister). The netlist reader
programs are described in the EDIF2NGD Overview.

2. Reduces all components in the design to NGD primitives
To perform this step, NGDBuild merges components that reference other files by
finding the referenced NGO files. NGDBuild also finds the appropriate system
library components, physical macros (NMC files) and behavioral models.

3. Checks the design by running a Logical DRC (Design Rule Check) on the converted
design
The Logical DRC is a series of tests on the logical design. It is described in the
Logical Design Rule Check chapter.

4. Writes an NGD file as output

When NGDBuild reads the source netlist, it detects any files or parts of the design that
have changed since the last run of NGDBuild. It updates files as follows:
• If you modified your input design, NGDBuild updates all of the files affected by the

change and uses the updated files to produce a new NGD file.
The Netlist Launcher checks timestamps (date and time information) for netlist files
and intermediate NGDBuild files (NGOs). If an NGO file has a timestamp earlier
than the netlist file that produced it, the NGO file is updated and a new NGD file
is produced.

• NGDBuild completes the NGD production if all or some of the intermediate
files already exist. These files may exist if you ran a netlist reader before you
ran NGDBuild. NGDBuild uses the existing files and creates the remaining files
necessary to produce the output NGD file.

Command Line Tools User Guide
414 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix B: EDIF2NGD and NGDBuild

Note If the NGO for an netlist file is up to date, NGDBuild looks for an NCF file with
the same base name as the netlist in the netlist directory and compares the timestamp of
the NCF file against that of the NGO file. If the NCF file is newer, EDIF2NGD is run
again. However, if an NCF file existed on a previous run of NGDBuild and the NCF file
was deleted, NGDBuild does not detect that EDIF2NGD must be run again. In this case,
you must use the -nt on option to force a rebuild. The -nt on option must also be
used to force a rebuild if you change any of the EDIF2NGD options.

Syntax, files, and options for NGDBuild are described in the NGDBuild chapter.

Bus Matching
When NGDBuild encounters an instance of one netlist within another netlist, it requires
that each pin specified on the upper-level instance match to a pin (or port) on the
lower-level netlist. Two pins must have exactly the same name in order to be matched.
This requirement applies to all FPGAs and CPLDs supported for NGDBuild.

If the interface between the two netlists uses bused pins, these pins are expanded
into scalar pins before any pin matching occurs. For example, the pin A[7:0] might
be expanded into 8 pins named A[7] through A[0]. If both netlists use the same
nomenclature (that is, the same index delimiter characters) when expanding the bused
pin, the scalar pin names will match exactly. However, if the two netlists were created by
different vendors and different delimiters are used, the resulting scalar pin names do
not match exactly.

In cases where the scalar pin names do not match exactly, NGDBuild analyzes the pin
names in both netlists and attempts to identify names that resulted from the expansion
of bused pins. When it identifies a bus-expanded pin name, it tries several other
bus-naming conventions to find a match in the other netlist so it can merge the two
netlists. For example, if it finds a pin named A(3) in one netlist, it looks for pins named
A(3), A[3], A<3> or A3 in the other netlist.

The following table lists the bus naming conventions understood by NGDBuild.

Bus Naming Conventions
Naming Convention Example
busname(index) DI(3)

busname<index> DI<3>

busname[index] DI[3]

busnameindex DI3

If your third-party netlist writer allows you to specify the bus-naming convention,
use one of the conventions shown in the preceding table to avoid pin mismatch errors
during NGDBuild. If your third-party EDIF writer preserves bus pins using the EDIF
array construct, the bus pins are expanded by EDIF2NGD using parentheses, which is
one of the supported naming conventions.

Note NGDBuild support for bused pins is limited to this understanding of different
naming conventions. It is not able to merge together two netlists if a bused pin has
different indices between the two files. For example, it cannot match A[7:0] in one
netlist to A[15:8] in another.

In the Xilinx® UnifiedPro library, some of the pins on the block RAM primitives are
bused. If your third-party netlist writer uses one of the bus naming conventions listed in
the preceding table or uses the EDIF array construct, these primitives are recognized
properly by NGDBuild. The use of any other naming convention may result in an
unexpanded block error during NGDBuild.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 415

Appendix B: EDIF2NGD and NGDBuild

Netlist Launc her (Netlister)
The Netlist Launcher, which is part of NGDBuild, translates an EDIF netlist to an NGO
file. NGDBuild uses this NGO file to create an NGD file.

Note The NGC netlist file does not require Netlist Launcher processing. It is equivalent
to an NGO file.

When NGDBuild is invoked, the Netlist launcher goes through the following steps:

1. The Netlist Launcher initializes itself with a set of rules for determining what netlist
reader to use with each type of netlist, and the options with which each reader is
invoked.

The rules are contained in the system rules file (described in System Rules File) and
in the user rules file (described in User Rules File).

2. NGDBuild makes the directory of the top-level netlist the first entry in the Netlist
Launchers list of search paths.

3. For the top-level design and for each file referenced in the top-level design,
NGDBuild queries the Netlist Launcher for the presence of the corresponding
NGO file.

4. For each NGO file requested, the Netlist Launcher performs the following actions:

• Determines what netlist is the source for the requested NGO file

The Netlist Launcher determines the source netlist by looking in its rules
database for the list of legal netlist extensions. Then, it looks in the search
path (which includes the current directory) for a netlist file possessing a legal
extension and the same name as the requested NGO file.

• Finds the requested NGO file

The Netlist Launcher looks first in the directory specified with the -dd option
(or current directory if a directory is not specified). If the NGO file is not
found there and the source netlist was not found in the search path, the Netlist
Launcher looks for the NGO file in the search path.

• Determines whether the NGO file must be created or updated

If neither the netlist source file nor the NGO file is found, NGDBuild exits with
an error.

If the netlist source file is found but the corresponding NGO file is not found,
the Netlist Launcher invokes the proper netlist reader to create the NGO file.

If the netlist source file is not found but the corresponding NGO file is found,
the Netlist Launcher indicates to NGDBuild that the file exists and NGDBuild
uses this NGO file.

If both the netlist source file and the corresponding NGO file are found, the
netlist files time stamp is checked against the NGO files timestamp. If the
timestamp of the NGO file is later than the source netlist, the Netlist Launcher
returns a found status to NGDBuild. If the timestamp of the NGO file is earlier
than the netlist source, or the NGO file is not present in the expected location,
then the Launcher creates the NGO file from the netlist source by invoking
the netlist reader specified by its rules.

Note The timestamp check can be overridden by options on the NGDBuild
command line. The -nt on option updates all existing NGO files, regardless of
their timestamps. The -nt off option does not update any existing NGO
files, regardless of their timestamps.

5. The Netlist launcher indicates to NGDBuild that the requested NGO files have been
found, and NGDBuild can process all of these NGO files.

Command Line Tools User Guide
416 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix B: EDIF2NGD and NGDBuild

Netlist Launc her Rules Files
The behavior of the Netlist Launcher is determined by rules defined in the system rules
file and the user rule file. These rules determine the following:
• What netlist source files are acceptable
• Which netlist reader reads each of these netlist files
• What the default options are for each netlist reader

The system rules file contains the default rules supplied by Xilinx®. The user rules file
can add to or override the system rules.

User Rules File (URF)
The user rules file can add to or override the rules in the system rules file. You can specify
the location of the user rules file with the -ur option. The user rules file must have a
.urf extension. See -ur (Read User Rules File) in this chapter for more information.

User Rules and System Rules
User rules are treated as follows:
• A user rule can override a system rule if it specifies the same source and target

files as the system rule.
• A user rule can supplement a system rule if its target file is identical to a system

rules source file, or if its source file is the same as a system rules target file.
• A user rule that has a source file identical to a system rules target file and a target

file that is identical to the same system rules source file is illegal, because it defines a
loop.

User Rules Format
Each rule in the user rules file has the following format:

RuleName = <rulename1 >;
<key1 > = <value1 >;
<key2 > = <value2 >;
.
.
.
<keyn > = <valuen >;

Following are the keys allowed and the values expected:

Note The value types for the keys are described in Value Types in Key Statements below.

• RuleName - This key identifies the beginning of a rule. It is also used in error
messages relating to the rule. It expects a RULENAME value. A value is required.

• NetlistFile - This key specifies a netlist or class of netlists that the netlist reader takes
as input. The extension of NetlistFile is used together with the TargetExtension to
identify the rule. It expects either a FILENAME or an EXTENSION value. If a file
name is specified, it should be just a file name (that is, no path). Any leading path is
ignored. A value is required.

• TargetExtension - This key specifies the class of files generated by the netlist reader.
It is used together with the extension from NetlistFile to identify the rule. It expects
an EXTENSION value. A value is required.

• Netlister - This key specifies the netlist reader to use when translating a specific
netlist or class of netlists to a target file. The specific netlist or class of netlists is
specified by NetlistFile, and the class of target files is specified by TargetExtension.
It expects an EXECUTABLE value. A value is required.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 417

Appendix B: EDIF2NGD and NGDBuild

• NetlisterTopOptions - This key specifies options for the netlist reader when
compiling the top-level design. It expects an OPTIONS value or the keyword
NONE. Included in this string should be the keywords $INFILE and $OUTFILE, in
which the input and output files is substituted. In addition, the following keywords
may appear.

– $PART - The part passed to NGDBuild by the -p option is substituted. It
may include architecture, device, package and speed information. The syntax
for a $PART specification is the same as described in -p (Part Number) in the
Introduction chapter.

– $FAMILY - The family passed to NGDBuild by the -p option is substituted. A
value is optional.

– $DEVICE - The device passed to NGDBuild by the -p option is substituted. A
value is optional.

– $PKG - The package passed to NGDBuild by the -p option is substituted. A
value is optional.

– $SPEED - The speed passed to NGDBuild by the -p option is substituted. A
value is optional.

– $LIBRARIES - The libraries passed to NGDBuild. A value is optional.

– $IGNORE_LOCS - Substitute the -r option to EDIF2NGD if the NGDBuild
command line contained a -r option.

– $ADD_PADS - Substitute the -a option to EDIF2NGD if the NGDBuild
command line contained a -a option.

The options in the NetlisterTopOptions line must be enclosed in quotation
marks.

• NetlisterOptions - This key specifies options for the netlist reader when compiling
sub-designs. It expects an OPTIONS value or the keyword NONE. Included in this
string should be the keywords $INFILE and $OUTFILE, in which the input and
output files is substituted. In addition, any of the keywords that may be entered for
the NetlisterTopOptions key may also be used for the NetlisterOptions key.

The options in the NetlisterOptions line must be enclosed in quotation marks.

• NetlisterDirectory - This key specifies the directory in which to run the netlist
reader. The launcher changes to this directory before running the netlist reader. It
expects a DIR value or the keywords $SOURCE, $OUTPUT, or NONE, where the
path to the source netlist is substituted for $SOURCE, the directory specified with
the -dd option is substituted for $OUTPUT, and the current working directory is
substituted for NONE. A value is optional.

• NetlisterSuccessStatus - This key specifies the return code that the netlist reader
returns if it ran successfully. It expects a NUMBER value or the keyword NONE. The
number may be preceded with one of the following: =, <, >, or !. A value is optional.

Command Line Tools User Guide
418 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix B: EDIF2NGD and NGDBuild

Value Types in Key Statements
The value types used in the preceding key statements are the following:
• RULENAME -Any series of characters except for a semicolon ; and white space (for

example, space, tab, newline).
• EXTENSION -A . followed by an extension that conforms to the requirements of

the platform.
• FILENAME -A file name that conforms to the requirements of the platform.
• EXECUTABLE -An executable name that conforms to the requirements of the

platform. It may be a full path to an executable or just an executable name. If it is
just a name, then the $PATH environment variable is used to locate the executable.

• DIR -A directory name that conforms to the requirements of the platform.
• OPTIONS -Any valid string of options for the executable.
• NUMBER -Any series of digits.
• STRING -Any series of characters in double quotes.

System Rules File
The system rules are shown following. The system rules file is not an ASCII file, but for
the purpose of describing the rules, the rules are described using the same syntax as in
the user rules file. This syntax is described in User Rules File.

Note If a rule attribute is not specified, it is assumed to have the value NONE.

System Rules File
###
edif2ngd rules
###

RuleName = EDN_RULE;
NetlistFile = .edn;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] [$QUIET] [$AUL] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = EDF_RULE;
NetlistFile = .edf;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] [$QUIET] [$AUL] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = EDIF_RULE;
NetlistFile = .edif;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] [$QUIET] [$AUL] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = SYN_EDIF_RULE;
NetlistFile = .sedif;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = NONE;
NetlisterOptions = "-l synopsys [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 419

Appendix B: EDIF2NGD and NGDBuild

Rules File Examples
This section provides examples of system and user rules. The first example is the basis
for understanding the ensuing user rules examples.

Example 1: EDF_RULE System Rule
As shown in the System Rules File, the EDF_RULE system rule is defined as follows.

RuleName = EDF_RULE;
NetlistFile = .edf;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] [$QUIET] [$AUL] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

The EDF_RULE instructs the Netlist Launcher to use EDIF2NGD to translate an EDIF
file to an NGO file. If the top-level netlist is being translated, the options defined in
NetlisterTopOptions are used; if a lower-level netlist is being processed, the options
defined by NetlisterOptions are used. Because NetlisterDirectory is NONE, the Netlist
Launcher runs EDIF2NGD in the current working directory (the one from which
NGDBuild was launched). The launcher expects EDIF2NGD to issue a return code of 0 if
it was successful; any other value is interpreted as failure.

Example 2: User Rule
// URF Example 2
RuleName = OTHER_RULE; // end-of-line comments are also allowed
NetlistFile = .oth;
TargetExtension = .edf;
Netlister = other2edf;
NetlisterOptions = "$INFILE $OUTFILE";
NetlisterSuccessStatus = 1;

The user rule OTHER_RULE defines a completely new translation, from a hypothetical
OTH file to an EDIF file. To do this translation, the other2edf program is used.
The options defined by NetlisterOptions are used for translating all OTH files,
regardless of whether they are top-level or lower-level netlists (because no explicit
NetlisterTopOptions is given). The launcher expects other2edf to issue a return code of 1
if it was successful; any other value be interpreted as failure.

After the Netlist Launcher uses OTHER_RULE to run other2edf and create an EDIF file,
it uses the EDF_RULE system rule (shown in the preceding section) to translate the
EDIF file to an NGO file.

Example 3: User Rule
// URF Example 3
RuleName = EDF_LIB_RULE;
NetlistFile = .edf;
TargetExtension = .ngo;
NetlisterOptions = "-l xilinxun $INFILE $OUTFILE";

Because both the NetlistFile and TargetExtension of this user rule match those of
the system rule EDF_RULE (shown in Example 1: EDF_RULE System Rule), the
EDF_LIB_RULE overrides the EDF_RULE system rule. Any settings that are not defined
by the EDF_LIB_RULE are inherited from EDF_RULE. So EDF_LIB_RULE uses the same
netlister (EDIF2NGD), the same top-level options, the same directory, and expects the
same success status as EDF_RULE. However, when translating lower-level netlists, the
options used are only -l xilinxun $INFILE $OUTFILE. (There is no reason to use
-l xilinxun on EDIF2NGD; this is for illustrative purposes only.)

Command Line Tools User Guide
420 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix B: EDIF2NGD and NGDBuild

Example 4: User Rule
// URF Example 4
RuleName = STATE_EDF_RULE;
NetlistFile = state.edf;
TargetExtension = .ngo;
Netlister = state2ngd;

Although the NetlistFile is a complete file name, this user rule also matches the system
rule EDF_RULE (shown in Example 1: EDF_RULE System Rule), because the extensions
of NetlistFile and TargetExtension match. When the Netlist Launcher tries to make a file
called state.ngo, it uses this rule instead of the system rule EDF_RULE (assuming that
state.edf exists). As with the previous example, the unspecified settings are inherited
from the matching system rule. The only change is that the fictitious program state2ngd
is used in place of EDIF2NGD.

Note If EDF_LIB_RULE (from the example in Example 3: User Rule) and this rule
were both in the user rules file, STATE_EDF_RULE includes the modifications made
by EDF_LIB_RULE. So a lower-level state.edf is translated by running state2ngd
with the -l xilinxun option.

NGDBuild File Names and Locations
Following are some notes about file names in NGDBuild:

• An intermediate file has the same root name as the design that produced it. An
intermediate file is generated when more than one netlist reader is needed to
translate a netlist to a NGO file.

• Netlist root file names in the search path must be unique. For example, if you have
the design state.edn, you cannot have another design named state in any of the
directories specified in the search path.

• NGDBuild and the Netlist Launcher support quoted file names. Quoted file names
may have special characters (for example, a space) that are not normally allowed.

• If the output directory specified in the call to NGDBuild is not writable, an error is
displayed and NGDBuild fails.

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 421

Command Line Tools User Guide
422 www.xilinx.com UG628 (v 14.5) March 20, 2013

Appendix C

Additional Resources
• Xilinx Glossary - http://www.xilinx.com/company/terms.htm

• Xilinx Support and Documentation - http://www.xilinx.com/support

Command Line Tools User Guide
UG628 (v 14.5) March 20, 2013 www.xilinx.com 423

http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=glossary
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

