Programs

- (Work 1) Compressed CNN Training with FPGA-based Accelerator.
 - Challenges: 1. Using quantization and pruning in early stage is risky. 2. Result-sparse pattern and sparse matrix transportation in BP phase 3. Variety loop dimensions of FP & BP.
- (Work 2) DNNVM: End-to-End Compiler Leveraging Operation Fusion on FPGA-based CNN Accelerators.
- (Contest) 1st place of 55th DAC system design contest.

Work 1: Training on FPGA

- We propose a hardware friendly training process with advanced quantization and pruning. Specially, we explore the effect of when to apply quantization and pruning.
- We design dedicated processing elements (PEs) on FPGA to support both operator-sparse and result-sparse patterns. The sparse matrix transposition function is supported by specific scheduling method with a novel data organization in external memory.
- We design configurable loop mapping strategy for both FP&BP CNN computation.
- Experimental results show that the proposed accelerator achieves 641GOPS equivalent performance and 3x better energy efficiency compared with GPU.

Work 1: Architecture & Result

- DNNVM is a completely end-to-end compilation infrastructure that firstly transforms algorithms from different deep learning frameworks into our domain-specific directed acyclic graphs (DAGs) called XGraph.
 - Based on XGraph, we design some heuristic fusion rules and a set of fusion templates to leverage the operation fusion on the entire computation graph.
 - We propose a heuristic subgraph isomorphism algorithm to enumerate fusion candidates instead of greedy algorithms. Then, we evaluate the performance of each fused subgraph and adopt an efficient heuristic shortest-path algorithm to find the optimal execution strategy.
 - Our experiments demonstrate that leveraging operation fusion achieves up to 2.3x local speedup compared with baseline without fusion. We achieve the throughput for VGG to be 334 GOP/s on ZU2@933MHz and 2.82 TOP/s on ZU9@933MHz, with the energy efficiency to be 44.5 and 123.7 GOPS/W respectively. We get 1.11x better performance on ZU9 than xfDNN on VU9P@500MHz.

Work 2: DNNVM

- DNNVM is a completely end-to-end compilation infrastructure that firstly transforms algorithms from different deep learning frameworks into our domain-specific directed acyclic graphs (DAGs) called XGraph.

System Design Contest

- Algorithm: SSD optimization. Fixed point training(INT8) w/ Compression
- Software: System & Functional level optimization with DeePhi DNNDK
- Hardware: DeePhi DPU IP on PYNQ
- Result(PYNQ): 0.62 IOU/4.2W/12fps
 - Result(GPU): 0.69 IOU/12.6W/24fps
- https://github.com/hirayaku/DAC2018-TGIIF

Acknowledgements

These programs are supported by Beijing Research Center for Information Science and Technology (BNRist) and DeePhi (Part of Xilinx)