Acceleration of Spark ML on Xilinx PYNQ FPGAs
Christoforos Kachris, Elias Koromilas, Ioannis Stamelos, Dimitrios Soudris
ICCS- National Technical University of Athens, kachris@microlab.ntua.gr

Contributions

SPYNQ: Spark on PYNQ: A framework for Spark execution on the Pynq platform
• An efficient framework for the seamless utilization of hardware accelerators for Spark applications in Zynq FPGAs.
• Development of an efficient set of libraries that hide the accelerator’s details to simplify the incorporation of hardware accelerators in Spark. The ML suite is offloaded to Reconfigurable logic.

Use case applications

Two algorithms have been evaluated using Spark ML on Pynq
• Logistic Regression is used for building predictive models for many complex pattern-matching and classification problems.
• K-means is one of the simplest unsupervised learning algorithms that solve the well known clustering problem and is applicable in a variety of disciplines, such as computer vision, biology, and economics.

Speedup compared to Xeon/ARM

• Up to 37x speedup compared to ARM-only execution
• Up to 3x speedup compared to single-thread Xeon platform

Energy efficiency

• Up to 28x reduction on energy-consumption compared to ARM-only solution and up to 32x reduction on energy-consumption compared to Xeon

Future Work

• Hardware acceleration of Spark ML suite on Amazon AWS F1 FPGA, seamlessly.
Future accelerators:
• Recommendation engines – Collaborative filtering, Decision trees, Naïve Bayes
• Future frameworks: Caffe, H20
Open source: https://github.com/vineyard2020/SPynq

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 687628 http://vineyard-h2020.eu