Lab Workbook Building a Complete Embedded System

Building a Complete Embedded System

Introduction

This lab guides you through the process of using Vivado and IP Integrator to create a complete Zynq
ARM Cortex-A9 based processor system targeting either the Zybo or ZedBoard Zynq development
boards. You will use the Block Design feature of IP Integrator to configure the Zynq PS and add IP to
create the hardware system, and SDK to create an application to verify the design functionality.

Objectives

After completing this lab, you will be able to:
e Create an embedded system design using Vivado and SDK flow

e Configure the Processing System (PS)

e Add Xilinx standard IP in the Programmable Logic (PL) section

e Use and route the GPIO signal of the PS into the PL using EMIO

e Use SDK to build a software project and verify the design functionality in hardware.
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises eight primary steps: You will create a top-level project using Vivado, create the
processor system using the IP Integrator, add two instances of the GPIO IP, validate the design, generate
the bitstream, export to the SDK, create an application in the SDK, and, test the design in hardware.

Design Description

In this lab, you will design a complete embedded system consisting of the ARM Cortex-A9 PS, and two
standard GPIO IPs to connect to on-board LEDs and their corresponding switches. The following block
diagram represents the completed design (Figure 1).

P

AXI

| AX14-Lit !
Interconnect € | GPIO
Block I
AXl4-Lite
e T siches

Figure 1. Completed Design

N xilinx.com/universit s
iA X”_INX WWWXXJ;% ﬁmi@r\frs' y yna
© copyright 2015 Xilinx

Building a Complete Embedded System

Lab Workbook

General Flow for this Lab

Step 1:

Create a
Vivado
Project

Step 5:

Generate the
Bitstream

=)

)

Step 2:
Create the
System using
IP Integrator

Step 6:

Export the
Design to
SDK

Create a Vivado Project

)

=)

Step 3:

Add Two
Instances of
GPIO

Step 7:
Create an
Application in
SDK

Step 4:

Validate the
Design

Step 8:

Test in
Hardware

Step 1

1-1. Launch Vivado and create an empty project targeting the Zybo or ZedBoard
Zynq Evaluation and Development Kit and using the Verilog language.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2015.2 >
Vivado 2015.2
1-1-2. Click Create New Project to start the wizard. You will see the Create A New Vivado Project
dialog box. Click Next.
1-1-3. Click the Browse button of the Project Location field of the New Project form, browse to
c:\xup\adv_embedded\labs, and click Select.
1-1-4. Enter lab1 in the Project Name field. Make sure that the Create Project Subdirectory box is
checked. Click Next.
Project Name
Enter a name for your project and specify a directory where the project data files will be '
stored.
Project name:
Project location: I C:fxupfadv_embeddedﬂabsl
Create project subdirectory
Project will be created at: C:/xup/adv_embedded/labs/lab1
Cancel
Figure 2. Project Name Entry
Zynq 1-2 www.xilinx.com/universit v
yng Y & XILINX.

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Building a Complete Embedded System

1-1-5. Select the RTL Project option in the Project Type form, and click Next.

1-1-6. Select Verilog as the Target Language and Simulation Language in the Add Sources form, and
click Next.

1-1-7. Click Next two more times to skip adding IP or constraints.

1-1-8. In the Default Partform, using Specify Boards to filter via evaluation board type.

1-1-9. Click on the Board Vendor button.

1-1-10. Select either the Zybo or the ZedBoard Zynq Evaluation and Development Kit of the
appropriate Board Version based on the board you have and click Next.

It is important to select the correct revision of the board, as the FSBL created later will generate
different code depending on the board revision (i.e. silicon version) you are using. For the
Zedboard the revision is likely to be “C” or “D”.

Default Part
Choose a default Xilinx part or board for your project. This can be changed later.

Select: @ Parts ﬂ Boards
4 Filter

Vendor: All
Display Name: | All
Board Rey:

Reset All Filters
Search: | O}

Display Name Vendor Board Rev Part I/0 Pin Count File Version

@ Arty

@ Basys3

B Mexys4

& Mexys4 DDR
B Mexys Video

@ Zybo

¢ ZedBoard Zynq Evaluation and Development Kitfem.avnet.com|d |4 xc72020dg484-1
B Artix-7 ACT01 Evaluation Platform
[Kintex-7 KC705 Evaluation Platform

£

digilentinc.com B.0
digilentinc.com C.0
digilentinc.com B.1
digilentinc.com C.1
digilentinc.com A.0
digilentinc.com B.3

@ xcTal5ticsg324-10
@ xc7a35tpg236-1
@ xcTal100tcsg324-1
@ wcTa100tcsg324-1
@ ucTa200tsbg484-1
9 xc7z010cg400-1

324
236
324
324
434
400

1.1
Li
1i
1.1
1.1
1.0

s 13

& wcTa200tthgs76-2 676 1.2
@ xc7k325tffa900-2 900 12

wilire. com 11
xilinx. com L1

Figure 3. Board Selection

1-1-11. Click Finish to create an empty Vivado project.

& XILINX.

www.xilinx.com/university Zynq 1-3
xup@xilinx.com

© copyright 2015 Xilinx

Building a Complete Embedded System Lab Workbook

Creating the Hardware System Using IP Integrator Step 2

2-1.

Create block design in the Vivado project using IP Integrator to generate
the ARM Cortex-A9 processor based hardware system.

2-1-1. In the Flow Navigator, click Create Block Design under IP Integrator.

2-1-2. Name the block system and click OK.

2-1-3. Click on Add IP in the message at the top of the Diagram panel.

2-1-4. Once the IP Catalog is open, type zy into the Search bar, and double click on ZYNQ7

Processing System entry to add it to the design.

2-1-5. Click on Run Block Automation and click OK to automatically configure the board presets.
Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its
configuration options an the right.

a, E|-- All Automation {1 out of 1 selected) Description
O
Zyng7 block automation applies current board preset and generates external
connections for FIXED_IO, Trigger and DDR. interfaces,
MOTE: Apply Board Preset will discard existing IP configuration - please uncheck
this box, if you wish to retain previous configuration.
Instance: jprocessing_system7_0
Options
Make Interface External: FIXED_IO, DDR
Apply Board Preset:
Cross Trigger In: Disable -
Cross Trigger Out: Dizable -
Figure 4. Zynq System Configuration View
2-1-6. Double click on the Zynq block to open the Customization window for the Zynq processing
system.
A block diagram of the Zynq PS should now be open, showing various configurable blocks of the
Processing System.
At this stage, designer can click on various configurable blocks (highlighted in green) and change
the system configuration.
Zynq 1-4 www.Xilinx.com/universit v
yna y & XILINX.

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Building a Complete Embedded System

ZYNQ7 Processing System (5.5) '

@ Documentation % Presets J’j IP Location ﬁ_‘ﬁ: Import ¥PS Settings

Page Navigator « | Zynq Block Design Summary Report

|zyng Block Design | 4
et —
1% Perpherals

SPIO Application Procassor Unit (APU)

SPI1
Peripheral IjO Pins B 2Co -

[swor__]
Mo
(150 L= . ARM Cortex Ko ARM Cortex Ao
MIO Configuration |__CAND System Leval el CeL
CAN 1 Central Regs
Clock Configuration |_UARTO
GIC

UART 1

GPIO
DOR Configuration —— I.__:l - SULTHEL T . J

. = —p[CBM’“; l 512 KB L2 Gache and Conrolier |
SMC Timing Calculation USE 0

PS-PL Configuration

S8 1 oM 25 KB
Interrupts ENETD SRR |
: [Eners] i
+

FLASH Memory T i

Interfaces

| |__SRAMMNOR Memory Interfaces

AND

| _NaND_____] <
Programmatie DDR23.LPDDR2
e — — = Liinte | Loge to Memary Controliar
SMC Timing] Interconnect
Calculation
e Processing System(PS
Resets | | consrston | ng System(PS)

olil2lal IDEE E] High Pardormamca
mn'm; PSPL AX| 320640 Slave

Clock Pora Poris

XADC

Programmable Logic(PL}

|_ OK J Cancel

Figure 5. Zynq System Configuration View

2-2. Configure the I/0O Peripherals block to have UART 1 and GPIO support.
Route 1-bit wide GPIO_I port to the EMIO so it can be connected to a user
10 pin.

2-2-1. Click on the MIO Configuration panel to open its configuration form.
2-2-2. Expand the I/O Peripherals (and GPIO).

2-2-3. Deselect all the peripherals except UART 1 and GPIO (Deselect ENET 0, USB 0, SD 0, and
Expand GPIO and deselect USB Reset and I12C Reset).

A xilinx.com/university Zynq 1-5
& XILINX. @iy, com

© copyright 2015 Xilinx

Building a Complete Embedded System Lab Workbook

ZYNQ7 Processing System (5.5) ‘
@ Documentation % Presets fj IP Location @ Import XPS Settings
Page Mavigator 4 |.||0 Configuration Summary Report
Zyng Block Design 4= Bank 0 TfO Voltage| LycMOS 3.3 - Bank 11/0 Voltage | LVCMOS 1.8V)
P5-PL Configuration [&] Search: [Q
=]
ferhedlirs | % Peripheral 0 Signal IO Type Speed Pullup Direc
W‘ E% - Memory Interfaces ~
I~ 1f0 Peripherals
Clock Configuration 0 = D ENET O
DDR Configuration [] ENET L
SMC Timing Calculation - [wsso
=[] =Bt
Interrupts & D —
@[] so1
=-[] UARTO
- o
-] 12c1
=- [] sp1o
[sPrt
[] canO
=[] cani
=~ GPIO
@ [ePromo MIO -

[] EmIo GPIO (width)
- ENET Reset
- [] USBEReset
1 [] 12CReset

OK 1 Cancel

Figure 6. Selecting UART 1 and GPIO Peripherals of PS

2-2-4. Route the PS section GPIO of a 1-bit width to the PL side pad using the EMIO interface by
doing the following:

o Under GPIO, select the check-box for the EMIO GPIO (Width) to use the EMIO GPIO. Then
click in the right-column and select 1 as the width. The EMIO will be connected to the first
user GPIO available which will be channel number 54 (Channels 0 to 53 are available to PS).

5 GPIO
- [v] GPIOMIO MIO -

5 swoio v B ol

Figure 7. Routing GPIO to PL
2-3. Deselect TTC device.

2-3-1. Expand the Application Processing Unit and uncheck the Timer 0.

Zynq 1-6 www.xilinx.com/university v
xup@xilinx.com iA XI LINX®

© copyright 2015 Xilinx

Lab Workbook Building a Complete Embedded System

MIO Configuration Bk, | [E- Memory Interfaces
| -
o |- 1/0 Peripherals
Clock Configuration 0 - Application Processor Unit
DDR Configuration | - [] Timer 0
- [] Timer 1
SMC Timing Calculation
- [] Watchdog
Interrupts +]- Programmable Logic Test and Debug

Figure 8. Deselecting Timer

2-3-2. Click OK.

The configuration form will close and the block diagram will be updated as shown below.

processing_system7_0
GPI0_0+- ||
DDR - ||j==="3 DDR
- FIXED_I0 4 ||| ™ FIXED IO
Tk ZYNQ M_AXI_GPO<p fi
FCLK_CLKD =
FCLK_RESETO_N =
ZYNQ)7 Processing System
Figure 9. ZYNQ7 Processing System configured block

2-4. Add one instance of GPIO and name it switches. Connect the block to the
Zyng.

2.4-1. Click the Add IP icon ¥ and search for AXI GPIO in the catalog.

2-4-2. Double-click the AXI GPIO to add an instance of the core to the design.

2-4-3. Click on the AXI GPIO block to select it, and in the Block properties tab, change the name to
switches.

2-4-4. Double click on the AXI GPIO block to open the customization window. Under Board Interface, for
GPIO, click on Custom to view the dropdown menu options, and select sws 8Bits for the
Zedboard or sws 4bits for the Zybo.

As the Zybo/Zedboard was selected during the project creation, and a board support package is
available for these boards, Vivado has knowledge of available resources on the board.

2-4-5. Click the IP Configuration tab. Notice the GPIO Width is set to 4 (Zybo) or 8 (Zedboard) and is
greyed out. If a board support package was not available, the width of the IP could be configured
here.

2-4-6. Click OK to finish configuring the GPIO and to close the Re-Customize IP window.

2-4-7. Click on Run Connection Automation, and select switches (which will include GPIO and
S_AXI)

i' XILINX www.xilinx.com/university Zynq 1-7

- ® xup@xilinx.com

© copyright 2015 Xilinx

Building a Complete Embedded System Lab Workbook

Click on GPIO and S_AXI to check the default connections for these interfaces.

Automatically make connections in your design by checking the boxes of the interfaces to connect, Select an
interface on the left to display its configuration options on the right.

=] All Automation (2 out of 2 selected)
=[] F switches

Description

Connect Board Part Interface to IP interface.
Interface: fswitches/GPIO
Options

Select Board Part Interface: | sws_4bits

Figure 10. Connection Automation for the GPIO (Zybo)

2-4-8. Click OK to automatically connect the S_AXI/ interface to the Zynq GPO port (through the AXI
interconnect block), and the GPIO port to an external interface.

Notice that after block automation has been run, two additional blocks that are required to
connect the blocks, Processor System Reset, and AXI Interconnect have automatically been
added to the design.

2-5. Add another instance of GPIO, name the instance /eds and connect it to the
Zynq. Configure its GPIO port.

2-5-1. Add another instance of the GPIO peripheral.
2-5-2. Change the name of the block to leds.

2-5-3. Double click on the leds block, and select leds 4bits (Zybo) or leds 8bits (Zedboard) for the
GPIO interface

2-5-4. Click on Run Connection Automation
2-5-5. Click leds, and check the connections for GPIO and S_AXI as before

2-5-6. Click OK to automatically connect the interfaces as before.

Notice that the AXI Interconnect block has the second master AXI (M01_AXI) port added and
connected to the S_AXI of the leds.

2-6. Connect the EMIO to the BTN

2-6-1. Right-click on the GPIO_0 pin of the Zynq instance, and select Make External to create an
external port.

2-6-2. Select the newly created GPIO_0 port, and change the name to btn in its properties form.

Zynq 1-8 www.xilinx.com/university v
xup@xilinx.com (A XI LINX®

© copyright 2015 Xilinx

Lab Workbook Building a Complete Embedded System

At this stage the design should look like as shown below.

processing_system?_0_axi_periph

—+SOD_&XJ switches
ACLK 2.5 AXI
rst_processing_system?7_0_100M RESETN _axi_adk GPIO <k "—D sws_8bits
slowest_sync_dk mb_reset wack Be® oo +8 . axi_aresetn
oy ¥ 00_ARESETN = 4
ext_reset_in bus_struct_reset[0:0] i = DMDI_.F\XH}= — AXI GPIO
aux_reset_in peripheral_reset[0:0] MOACK meom) leds
e ” i MOO_ARESETN
mb_debug _sys_rst interconnect_aresetn[0:0] = Mm—ACLK = 25X
d locked ipheral setn[0:0] . N a7
o e MO1_ARESETN _axi_ack GPID o || e ™ |58t
Processor System Reset _axi_aresetn
AXT Interconnect
AXI GPIO

processing_system?_0

GPI0_0 4= ||} {3 btn
DDR <= ||} { > DDR
FIXED_10+ |} { 3 FIXED_IO

9
st ZYNQ M_AXL_GPO < | e

ZYNQ7 Processing System

Figure 11. Completed design
2-7. \Verify that the addresses are assigned to the two GPIO instances and
validate the design for no errors.

2-7-1. Select the Address Editor tab and see that the addresses are assigned to the two GPIO
instances. They should look like as follows.

EZa Diagram x| Rl Address Editor X

A ca Slave Interface Base Mame Offset Address Range High Address

E =-{F processing_system7_0

=] =I-Ml Data (32 address bits : 0x40000000 [1G]]

- l'-I switches S_AKXI Reg 0x4120_0000 o4 v 0x4120 FFFF
. emm |eds 5_AXI Reg 0x4121 0000 64K + 0x4121 FFFF

Figure 12. Assigned addresses

The addresses should be in the 0x40000000 to Oxbfffffff range as the instances are connected to
M_AXI_GPO port of the processing system instance.

2-7-2. Select Tools > Validate Design to run the design rule checker and to make sure that there are
no design errors.

2-7-3. Select File > Save Block Design to save the design.

2-8. Add the provided Xilinx Design Constraints file (lab1*.xdc), which contains
the BTN’s location constraint, to the project.

2-8-1. Board awareness is not being used for the EMIO button, so the pin constraints need to be
provided for this interface. Click the Add Sources button in the Flow Navigator.

2-8-2. Select Add or create constraints, and click Next.

2-8-3. The Add or Create constraints window will appear. Click the Green Plus then Add Files...
and browse to the c:\xup\adv_embedded\sources\lab1 directory.

- xilinx.com/universit s
iA X”_INX WWWXXL:[.I‘)n@X)Zﬁm(.téglr\;erg y yna
© copyright 2015 Xilinx

Building a Complete Embedded System Lab Workbook

2-8-4. Select the lab1_zedboard.xdc or lab1_Zybo.xdc file, and click OK.

2-8-5. Click Copy constraints files into project, and click Finish to add the constraint file to the
project.

Generate the Bitstream Step 3

3-1. Create the top-level HDL of the embedded system. Add the provided
constraints file and generate the bitstream.

3-1-1. In Vivado, select the Sources tab, expand the Design Sources, right-click the system.bd and
select Create HDL Wrapper...

Block Design - system

Sources —SE R
a IZ_,J i$1' i 04}7 E
—I-{= Design Sources (1)

- o, (system.bd) (1)

+ | Constraints (1]
=)-{= Simulation Sources (1)
Hh- i mim_1 (1]

Figure 13. Selecting the system design to create the wrapper file

3-1-2. Click OK when prompted to allow Vivado to automatically manage this file.

The wrapper file, system_wrapper.v, is generated and added to the hierarchy. The wrapper file will be
displayed in the Auxiliary pane.

Block Design - system
Sources —Owe =
A= we AE
—H= Design Sources (1
: |---y_é-.'.system_wrapp-er (system
—|-4, system_i - system (s
E & system (system.v) (8]
+1= Constraints (1]
=M Simulation Sources (1]
-5 sim_1 (1)

Hierarchy | IP Sources | Libraries | Compile Order

£h Sources | Ei Design Signals | @ Board

Figure 14. Design Hierarchy View

3-1-3. Click on the Generate Bitstream in the Flow Navigator pane to synthesize and implement the
design, and generate the bitstream. (Click Save and Yes if prompted.)

3-1-4. When the bitstream generation is complete, click Cancel.

Zynq 1-10 www.xilinx.com/university v
xup@xilinx.com iA XILINX®

© copyright 2015 Xilinx

Lab Workbook Building a Complete Embedded System

Export the Design to the SDK Step 4

4-1.

4-1-1.

4-1-2.

Exporting the design and launch SDK

Export the hardware configuration by clicking File > Export > Export Hardware... Tick the box to
include the bitstream and click OK.

Expart hardware platform for software development

Export to: | B <Local to Project=

Cancel

Figure 15. Exporting the hardware

Launch SDK by clicking File > Launch SDK and click OK

(Launching SDK from Vivado will automatically load the SDK workspace associated with the
current project. If launching SDK standalone, the workspace will need to be selected.)

Generate an Application in SDK Step 5

5-1.

5-1-1.

Generate a board support package project with default settings and default
software project name.

SDK should open and automatically create a hardware platform project based on the

configuration exported from Vivado. A board support package and software application will be
created and associated with this hardware platform.

Select File > New > Board Support Package

v xilinx.com/university Zyng 1-11
& XILINX. e oo

© copyright 2015 Xilinx

Building a Complete Embedded System Lab Workbook

Xilinx Board Support Package Project
Create a Board Support Package,

Project name: | standalone_bsp_(|

Uze default location

Chxuphadv_embedded\labs\lab1\labl.sdk\standalone_bsp_0

default

Hardware Platform: | system_wrapper_hw_platform_0

CPU: | ps7_cortexad 0

Standalone is a simple, low-level software layer. It provides access to basic processor
features such as caches, interrupts and exceptions as well as the basic features of a
hosted environment, such as standard input and cutput, profiling, abort and exit.

Figure 16. Create BSP

5-1-2. Click Finish with the default settings selected (using the Standalone operating system).
This will open the Software Platform Settings form showing the OS and libraries selections.

5-1-3. Click OK to accept the default settings as we want to create a standalone_bsp_0 software
platform project without any additional libraries.

5-1-4. The library generator will run in the background and will create the xparameters.h file in the
lab1.sdk\standalone_bsp_0\ps7_cortexa9 0\include directory.

5-2. Create an empty application project, named lab1, and import the provided
lab1.c file.

5-2-1. Select File > New > Application Project.

5-2-2. In the Project Name field, enter lab1 as the project name.

5-2-3. Select the Use existing option in the Board Support Package field and then click Next.

Zynqg 1-12 www.xilinx.com/university (' XILINX

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Building a Complete Embedded System

Application Project »
Create a managed make application project. &

Project name: | lab1

Uze default location

Chauphadv_embeddedilabs\lab1\labl.sdk\lab1 Browse...
default

(05 Platform: | standalone]
Target Hardware
Hardware Platform: | system_wrapper_hw_platform_0 w || Mew...
Proceszorn ps7_cortexa® 0 LY
Target Software
Language: ®C (JC++

Board Support Package: () Create New lab1_bsp

(®) Use existing | standalone_bsp_0 v

Figure 17. Create a Blank Application Project

5-2-4. Select the Empty Application template and click Finish.
The lab1 project will be created in the Project Explorer window of SDK.

5-2-5. Select lab1 > src directory in the project view, right-click, and select Import.

5-2-6. Expand the General category and double-click on File System.

5-2-7. Browse to the c:\xup\adv_embedded\sources\lab1 folder.

5-2-8. Select the lab1.c source file and click Finish.
A snippet of the source code is shown in the following figure. Note the greyed out code will be
used in Lab5. The code reads from the switches, and writes to the LEDs. The BTN is read, and
written to the LED.

i‘ XILINX www.xilinx.com/university Zynq 1-13

xup@xilinx.com
© copyright 2015 Xilinx

Building a Complete Embedded System Lab Workbook

#include "xparameters.h"
#include "xgpio.h"
#include "xgpiops.h"
#ifdef MULTIBOOT
#include "xdevcfg.h"
#endif

static XGpioPs psGpioInstancePtr;
static int iPinNumber = 7; /*Led LD9 on 7edBoard and LD4 on Zybo is connected to MIO pin 7%/

1

int main (void)

{

XGpio sw, led;

int i, pshb_check, sw_check;
XGpioPs_Config*GpioConfigPtr;
int xStatus;

int iPinNumberEMIO = 54;

u32 uPinDirectionEMIO = @x@;
u32 uPinDirection = @x1;

xil_printf("-- Start of the Program --\r\n");

J/ BXI GPIO switches Intialization
XGpio_Initialize(&sw, XPAR_SWITCHES_DEVICE_ID);

// AXI GPIO leds Intialization
XGpio_TInitialize(&led, XPAR_LEDS_DEVICE_ID);

// PS GPIO Intialization
GpioConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_O_DEVICE_ID);
if(GpioConfigPtr == NULL)
return XST_FAILURE;
xStatus = XGpioPs_CfgInitialize(&psGpioInstancePtr,
GpioConfigPtr,
GpioConfigPtr->BaseAddr);
iF(XST_SUCCESS != xStatus)
print(" PS GPIO INIT FAILED \n\r");
//PS GPIO pin setting to Qutput
XGpioPs_SetDirectionPin(&psGpioInstancePtr, iPinMumber,uPinDirection};
XGpioPs_SetOutputEnablePin(&psGpioInstancePtr, iPinNumber,1);
//EMIO PIN Setting to Input port
XGpioPs_SetDirectionPin(&psGpioInstancePtr,
iPinNumberEMIO,uPinDirectionEMIO);
XGpioPs_SetOutputEnablePin(&psGpioInstancePtr, iPinNumberEMIO,Q);

xil_printf("-- Press BTNR (Zedboard) or BTN3 (Zybo) to see the LED light --\r\n");
xil_printf("-- Change slide switches to see corresponding output on LEDs --\r\n");
xil_printf("-- Set slide switches to @xBF to exit the program --\r\n");

while (1)

sw_check = XGpio_DiscreteRead(&sw, 1);
XGpio_DiscreteWrite(&led, 1, sw_check);
pshb_check = XGpioPs_ReadPin(&psGpioInstancePtr,iPinNumberEMIO);
XGpioPs_lWritePin(&psGpioInstancePtr,iPinNumber,pshb_check);
if((sw_check & ©x@f)==0x0F)
break;

for (i=@; i<9999999; i++); // delay loop

3

xil_printf("-- End of Program --\r\n");

#ifdef MULTIBOOT

// Driver Instantiations

XDcfg XDcfg_0;

u32 MultiBootReg = 8;

#define PS_RST_CTRL_REG (XPS_SYS_CTRL_BASEADDR + 0x200)

#define PS_RST_MASK Ox1 /* PS software reset */

#define SLCR_UNLOCK_OFFSET @x@8

// Initialize Device Configuration Interface
XDcfg_Config *Config = XDcfg_LookupConfig(XPAR_XDCFG_6_DEVICE_ID);
XDcfg_CfgInitialize(&XDcfg @, Config, Config->BaseAddr);

MultiBootReg = @; // Once done, boot the master image stored at Oxfcoe_0000
Xil_Out32(@xF8000000 + SLCR_UNLOCK_OFFSET, @xDFODDFOD); // unlock SLCR
XDcfg_WriteReg(XDcfg_@.Config.BaseAddr, XDCFG_MULTIBOOT_ADDR_OFFSET, MultiBootReg); // write to multiboot reg
// synchronize
_asm__
"dsb\n\t"
"ish"

IH
Xil Out32(PS_RST_CTRL_REG, PS_RST_MASK);
#endif
return 8;

}

Figure 18. Snippet of Source Code

Zynq 1-14 www.xilinx.com/university v
xup@xilinx.com (A X”_INX®

© copyright 2015 Xilinx

Lab Workbook Building a Complete Embedded System

Test in Hardware Step 8

6-1.

6-1-4.

6-1-5.

Connect and power up the board. Establish serial communications using
the SDK’s Terminal tab. Verify the design functionality.

Connect and power up the board.
Select the & Terminal tab. |f it is not visible then select Window > Show view > Terminal.

Click on *¥ and select appropriate COM port (depending on your computer), and configure the
terminal with the parameters as shown below.

View Settings:
View Title: | Terminal 1

Encoding: | 150-8838-1

Connection Type:

Serial

Settings:

Port: (COMG) w
Baud Rate:
Data Bits: 8

Stop Bits: 1

Parity: None

Flow Control: | None

Timeout (sec): | 5

Figure 19. SDK Terminal Settings
Select Xilinx Tools > Program FPGA and then click the Program button.

Select the lab1 project in the Project Explorer, right-click and select Run As > Launch on
Hardware to download the application, execute ps7_init, and execute lab1.elf.

You should see the following output on the Terminal console.

-- Start of the Program --

-- Press BTNR (Zedboard) or BTN3 (Zybo) to see the LED light --
-- Change slide switches to see corresponding output on LEDs --
-- Set slide switches to @x8F to exit the program --

Figure 20 SDK Terminal Output

Press the BTNR (Zedboard) or BTN3 (Zybo) and see the LED light up.

Change the slide switches and see the corresponding LED turning ON and OFF.

i: XILINX@ www.xilinx.com/university Zynq 1-15

xup@xilinx.com
© copyright 2015 Xilinx

Building a Complete Embedded System Lab Workbook

6-1-9. Set the four (right-most for ZedBoard, all for Zybo) slide switches to the ON position to exit the
program.

Click the Terminate button (®) on the Console ribbon bar to terminate the execution if you want
to terminate the application at anytime before setting the slide switches to the ON position..

6-1-10. Close SDK and Vivado programs by selecting File > Exit in each program.

6-1-11. Turn OFF the power to the board.

Conclusion

In this lab, you created an ARM Cortex-A9 processor based embedded system using the Zynq device for
the Zybo/ZedBoard. You learned how to route the GPIO connected to the PS section to the FPGA (PL)
pin using the EMIO. You instantiated the Xilinx standard GPIO IP to provide input and output functionality.
You also saw that whenever the dedicated pins are not used, you need to provide pin constraints through
the user constraints file (xdc).

You created the project in Vivado, created the hardware system using IPI, implemented the design in
Vivado, exported the generated bitstream to the SDK, created a software application in the SDK, and
verified the functionality in hardware after programming the PL section and running the application from
the DDR memory.

Zynq 1-16 www.xilinx.com/university v
xup@xilinx.com iA XILINX®

© copyright 2015 Xilinx

