
Lab Workbook Profiling and Performance Tuning

 www.xilinx.com/university Zynq 6-1
 xup@xilinx.com
 © copyright 2017 Xilinx

Profiling and Performance Tuning

Introduction

This lab guides you through the process of profiling an application and analyzing the output. The
application is then accelerated in hardware and profiled again to analyze the performance improvement.

Objectives

After completing this lab, you will be able to:
 Setup the board support package (BSP) for profiling an application
 Set the necessary compiler directive on an application to enable profiling
 Setup the profiling parameters
 Profile an application and analyze the output

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

Design Description

In this lab, you will design an embedded system consists of ARM Cortex-A9 processor SoC and two
instances of the provided FIR filter IP. The following diagram represents the completed design (Figure
1).

Figure 1. Completed Design

Profiling and Performance Tuning Lab Workbook

Zynq 6-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

General Flow for this Lab

In the instructions below;
{sources} refers to: C:\xup\adv_embedded\2017_1_zynq_sources
{labs} refers to : C:\xup\ adv_embedded \2017_1_zynq_labs

Board support for the Zybo is not included in Vivado 2017.1 by default. The relevant zip file need to be
extracted and saved to: {Vivado installation}\data\boards\board_files\.

These files can be downloaded either from the Digilent, Inc. webpage
(https://reference.digilentinc.com/vivado/boardfiles2015) or the XUP webpage
(http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-adv-embedded-design-
zynq.html) where this material is also hosted.

Create a Vivado Project Step 1

1-1. Launch Vivado and create an empty project, called lab6, targeting the Zybo
or ZedBoard Zynq Evaluation and Development Kit and using the Verilog
language.

1-1-1. Open Vivado and create a new project new project call lab6 in the {labs} directory.

1-1-2. Select the RTL Project option in the Project Type form, and click Next.

1-1-3. Select Verilog as the Target Language in the Add Sources form, and click Next.

1-1-4. Click Next two times.

1-1-5. In the Default Part form, click on Boards and select either the Zybo or Zedboard and click Next.

1-1-6. Click Finish to create an empty Vivado project.

Step 1:

Create a
Vivado
Project

Step 2:

Create the
Hardware

System using
IP Integrator

Step 3:

Add FIR Core
to the System

Step 4:

Generate the
Bitstream

Step 5:

Export the
Design to the

SDK

Step 6:

Create the
Application

Step 7:

Run the
Application
and Profile

Lab Workbook Profiling and Performance Tuning

 www.xilinx.com/university Zynq 6-3
 xup@xilinx.com
 © copyright 2017 Xilinx

1-2. Set the project settings to include provided fir_top IP

1-2-1. Click Settings in the Flow Navigator pane.

1-2-2. Expand IP in the left pane of the Project Settings form.

1-2-3. Click Repository and using “minus” button remove entries, if any.

1-2-4. Click on the “plus” button, browse to {sources}\lab6\ and click Select.

1-2-5. Click OK.

The directory will be scanned and it will report one IP was detected.

1-2-6. Click OK twice.

Creating the Hardware System Using IP Integrator Step 2

2-1. Create a block design in the Vivado project using IP Integrator to generate
the Zynq ARM Cortex-A9 processor based hardware system.

2-1-1. In the Flow Navigator, click Create Block Design under IP Integrator.

2-1-2. Name the block system and click OK.

2-1-3. Click on the button.

2-1-4. Once the IP Catalog is open, type zy into the Search bar, and double click on ZYNQ7
Processing System entry to add it to the design.

2-1-5. Click Run Block Automation, and click OK to accept the default settings.

2-1-6. Double click on the Zynq block to open the Customization window for the Zynq processing
system.

A block diagram of the Zynq should now be open, showing various configurable blocks of the
Processing System.

2-2. Configure the I/O Peripherals block to only have UART 1 support. Deselect
the TTC device.

2-2-1. Click on the MIO Configuration panel to open its configuration form.

2-2-2. Expand the I/O Peripherals on the right.

2-2-3. Uncheck ENET 0, USB 0, and SD 0, GPIO (GPIO MIO), leaving UART 1 selected.

Profiling and Performance Tuning Lab Workbook

Zynq 6-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

2-2-4. In the MIO Configuration panel, expand the Application Processing Unit and uncheck the
Timer 0.

2-2-5. Click OK.

Figure 2. ZYNQ Processing System configured block

Add FIR Core to the System Step 3

3-1. Instantiate the provided FIR core twice naming the instances as fir_left and
fir_right. Validate the design.

3-1-1. Click the button and search for fir in the catalog.

3-1-2. Double-click on the fir_top_v1_0 to add the IP instance to the system

3-1-3. Select the fir_top_1 instance and change its name to fir_left in its property form.

3-1-4. Click the button and search for fir in the catalog.

3-1-5. Double-click on the fir_top_v1_0 to add the IP instance to the system

3-1-6. Select the fir_top_1 instance and change its name to fir_right in its property form.

3-1-7. Click on Run Connection Automation, and select All Automation to select fir_left and fir_right.

3-1-8. Click on s_axi_fir_io for both fir_left and fir_right and confirm that they will be automatically
connected to the Zynq M_AXI_GP0 port

3-1-9. Click OK to connect the two blocks to the M_AXI_GP0 interface.

The design should look similar to shown below:

Lab Workbook Profiling and Performance Tuning

 www.xilinx.com/university Zynq 6-5
 xup@xilinx.com
 © copyright 2017 Xilinx

Figure 3. The completed design

It is not necessary to connect the interrupt signals of the fir blocks.

3-1-10. Select the Diagram tab, and click on the (Validate Design) button to make sure that there are
no errors.

Ignore warnings.

Generate the Bitstream Step 4

4-1. Create the top-level HDL of the embedded system, and generate the
bitstream.

4-1-1. In Vivado, select the Sources tab, expand the Design Sources, right-click the system.bd and
select Create HDL Wrapper and click OK.

4-1-2. Click on the Generate Bitstream in the Flow Navigator pane to synthesize and implement the
design, and generate the bitstream.

4-1-3. Click Save to save the design and Yes to run the necessary processes. Click OK to launch the
runs.

4-1-4. When the bitstream generation process has completed click Cancel.

Export the Design to the SDK Step 5

5-1. Export the design to the SDK, create the software BSP using the
standalone operating system and enable the profiling options.

5-1-1. Export the hardware configuration by clicking File > Export > Export Hardware…

Profiling and Performance Tuning Lab Workbook

Zynq 6-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

5-1-2. Tick the box to Include Bitstream, and click OK

5-1-3. Launch SDK by clicking File > Launch SDK and click OK

5-1-4. In SDK, select File > New > Board Support Package.

5-1-5. Notice Standalone_bsp_0 in the Project name field and click Finish with default settings.

A Board Support Package Settings window will appear.

5-1-6. Select the Overview > standalone entry in the left pane, click on the drop-down arrow of the
enable_sw_intrusive_profiling Value field and select true.

Figure 4. Enable profiling in the board support package

5-1-7. Select the Overview > drivers > cpu_cortexa9 and add –pg in the extra_compiler_flags Value
field.

Figure 5. Adding profiling switch

5-1-8. Click OK to accept the settings and create the BSP.

Create the Application Step 6

6-1. Create the lab6 application using the provided lab6.c, fir.c, fir.h,
fir_coef.dat, and xfir_fir_io.h files.

6-1-1. Select File > New > Application Project.

6-1-2. Enter lab6 as the project name, select the Use existing standalone_bsp_0 option, and click
Next.

6-1-3. Select Empty Application in the Available Templates pane and click Finish.

Lab Workbook Profiling and Performance Tuning

 www.xilinx.com/university Zynq 6-7
 xup@xilinx.com
 © copyright 2017 Xilinx

6-1-4. In the lab6 project, right click on the src directory and select Import.

6-1-5. Expand the General folder and double-click on File system, and browse to the {sources}\lab6
directory.

6-1-6. Select fir_coef.dat, fir.c, fir.h, lab6.c, and xfir_fir_io.h, and click Finish.

The program should compile successfully and generate the lab6.elf file.

6-1-7. Open the lab6.c file and scroll to the main function at the bottom. Notice the following code:

The function fir_software() function is a software implementation of the FIR function. The
filter_hw_accel_input() function offloads the FIR function to the two FIR blocks that have been
implemented in the PL.

Run the Application and Profile Step 7

7-1. Place the board into the JTAG boot up mode. Program the PL section and
run the application using the user defined SW_PROFILE symbol.

7-1-1. Place the board in the JTAG boot up mode.

7-1-2. Power ON the board.

7-1-3. Select Xilinx Tools > Program FPGA and click on Program.

7-1-4. Right click on the lab6 directory, and select C/C++ Build Settings.

7-1-5. Under the ARM v7 gcc compiler group, select the Symbols sub-group, click on the button to
open the value entry form, enter SW_PROFILE, and click OK.

This will allow us to profile the software loop of the FIR application.

Figure 6. Add user-defined symbol

Profiling and Performance Tuning Lab Workbook

Zynq 6-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

7-1-6. Under the ARM v7 gcc compiler group, select the Profiling sub-group, then check the Enable
Profiling box, and click OK.

Figure 7. Compiler setting for enabling profiling

7-1-7. From the menu bar, Select Run > Run Configurations… and double click on Xilinx C/C++
application (System Debugger) to create a new configuration.

7-1-8. Click on the newly created lab6 Debug configuration, and select the Application tab.

7-1-9. Click on the Advance Options Edit… button.

7-1-10. Click on the Enable Profiling (gprof) check box, enter 100000 (100 kHz) in the Sampling
Frequency field, enter 0x10000000 in the scratch memory address field, and click OK.

Figure 8. Profiling options

7-1-11. Click the Run button to download the application and execute it.

The program will run.

Lab Workbook Profiling and Performance Tuning

 www.xilinx.com/university Zynq 6-9
 xup@xilinx.com
 © copyright 2017 Xilinx

7-2. Analyze the results.

7-2-1. When execution is completed, the Gmon File Viewer dialog box will appear showing lab6.elf as
the corresponding binary file. Click OK.

7-2-2. Click on the Sort samples per function button ().

7-2-3. Click in the %Time column to sort in the descending order.

Note that the fir_software routine is called 60 times, 20 samples were taken during the profiling,
and on an average of 3.333 (ZedBoard) or 3.499 (Zybo) microseconds were spent per call.

Figure 9. Sorting results

7-2-4. Go back to the Run Configuration, and change the sampling frequency to 1000000 (1 MHz) and
profile the application again.

7-2-5. When execution is completed, click OK and the gprof viewer will be updated.

7-2-6. Invoke gprof, select the Sorts samples per function output, and sort the %Time column.

Notice that the output has better resolution and reports more functions and more samples per
function calls. Note that the number of calls to the fir_software function has not changed but the
number of samples taken increased, and the average time spent per call is 5.000 (5.000 on Zybo
too) microseconds in the figure below.

Profiling and Performance Tuning Lab Workbook

Zynq 6-10 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2017 Xilinx

Figure 10. Profiled results with 1 MHz sampling frequency

At this stage, the designer of the system would decide if the FIR function should be ported to
hardware.

7-3. Profile the application using the hardware FIR filter IP by removing the user
defined SW_PROFILE symbol.

7-3-1. Select the lab6 application, right-click, and select C/C++ Build Settings.

7-3-2. Under the ARM v7 gcc compiler group, select the Symbols sub-group, select SW_PROFILE,
and delete it by clicking on the delete button.

This will allow us to profile the hardware IP of the FIR application.

Figure 11. Deleting the user-defined symbol

7-3-3. Click Apply, and then click OK

7-3-4. Select Run > Run Configurations and click the Run button to profile the application again and
click OK when profiling completes.

Lab Workbook Profiling and Performance Tuning

 www.xilinx.com/university Zynq 6-11
 xup@xilinx.com
 © copyright 2017 Xilinx

Notice that the output now shows filter_hw_accel_input function call instead of the fir_software
function call. Note that the average time spent per call is much less as the filtering is done in the
hardware instead of the software.

7-3-5. Close the SDK and Vivado programs by selecting File > Exit in each program.

7-3-6. Turn OFF the power on the board.

Conclusion

This lab led you through enabling the software BSP and the application settings for the profiling. You
went through creating the hardware which included the hardware IP and was later profiled in the
application. You analyzed the profiled application output.

