Lab Workbook Extending Memory Space with Block RAM

Extending Memory Space with Block RAM

Introduction

The Zynq device supports various types of memory including volatile (e.g. DDR3) and non-volatile (e.g.
QSPI Flash). There are volatile and non-volatile hard memory controllers on the Zyng PS. The PL portion
of the Zynq device has plenty of Block RAM (BRAM) which can be used by an IP without contending for
external resources and creating performance bottleneck. This lab guides you through the process of
extending the memory space in Zyng-based platform using available PL based BRAM resource.

Objectives

After completing this lab, you will be able to:
e Add BRAM and connect it to the processing system’s AXI master port
o Execute the software application having data section in the BRAM

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

Design Description

In this lab, you will add an AXI BRAM memory controller and associated 64 Kb BRAM memory to the
system you created in the first lab. The following block diagram represents the completed design (Figure
1).

Block

AXI |
AXl4
Interconnect :—FF ,&erRAM Controller H BRAM

PL

e) e
AXI ———————
Interconnect AXl4-Lite 1
Dok 2) oo TR
AXl4-Lite
e e L, _svitches

Figure 1. Completed Design

3l www.Xilinx.com/university Zynq 3-1
i‘ XI LINX“‘ xup@xilinx.com

© copyright 2018 Xilinx

Extending Memory Space with Block RAM

Lab Workbook

General Flow for this Lab

Step 1:

Open the
Project

Step 5:

Generate
Applications
in SDK

=)

=

Step 2:

Configure the
Processor to
Enable
M_AXI_GP1
Interface

Step 6:

Testin
Hardware

In the instructions below;

{sources} refers to: C:\xup\adv_embedded\2018 2 zyng_sources
{labs} refers to : C:\xup\ adv_embedded \2018 2 zynq_labs

=

Step 3:

Extend with
BRAM

Step 4:
Create
Wrapper and
Generate the
Bitstream

Board support for PYNQ-Z1 and PYNQ-Z2 are not included in Vivado 2018.2 by default. The relevant zip

file need to be extracted and saved to: {Vivado installation}\data\boards\board_files\.

These files can be downloaded from the XUP webpage
(http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-adv-embedded-design-

zyng.html) where this material is also hosted.

Open the Project

Step 1

1-1. Open the Vivado program. Open the labl project you created earlier or use
the labl project from the labsolution directory, and save the project as lab3.

1-1-1.

Start Vivado if necessary and open either the labl project (labl.xpr) you created earlier or the

labl project in the labsolutions directory using the Open Project link in the Getting Started page.

1-1-2.

Select File > Project > Save As ... to open the Save Project As dialog box. Enter lab3 as the

project name. Make sure that the Create Project Subdirectory and Import All Files to the New

Project options are checked, the project directory path is {labs} and click OK.

This will create the lab3 directory and save the project and associated directory with lab3 name.

Configure the Processor to Enable M_AXI_GP1

Step 2

2-1. Open the Block Design and enable the M_AXI_GP1 interface.

2-1-1. Click Open Block Design in the Flow Navigator pane

Zynq 3-2

www.xilinx.com/university

© copyright 2018 Xilinx

xup@xilinx.com

& XILINX.

Lab Workbook Extending Memory Space with Block RAM

2-1-2. Double-click on the Zynq processing system instance to open its configuration form.

2-1-3. Select PS-PL Configuration in the Page Navigator window in the left pane, expand AXI Non
Secure Enablement>GP Master AXI Interface, and click on the check-box of the M_AXI GP1
Interface to enable it.

2-1-4. Select Clock Configuration in the Page Navigator window in the left pane, expand PL Fabric
Clocks on the right, and click on the check-box of the FCLK_CLK1 to enable it.

2-1-5. Enter the Requested Frequency for the FCLK_CLK1 as 140.00000 MHz.

2-1-6. Click OK to accept the settings and close the configuration form.

processing_system7_0

DOR =+ |[f=
FIXED_IO + ||}
M_AXI_GPO o [i=

—= M _AX|_GPD_ACLK Y - = -

- M_AX_GP1_ACLK ZYNG M_AXI_GP1 1
FOLK_CLKD j=—

FOLK,_CLK1 |
FCLK_RESETD_N r

ZYMNQAT Processing System
Figure 2. M_AXI_GP1 interface enabled

Extend with BRAM Step 3

3-1. Add an AXI BRAM Controller instance with BRAM.

3-1-1. Clickthe + button and search for BRAM in the catalog.

3-1-2. Double-click the AXI BRAM Controller to add an instance to the design.

3-1-3. Click on Run Connection Automation, and select axi_bram_ctrl_0

3-1-4. Click on BRAM_PORTA and BRAM_PORTB check boxes.

3-1-5. Click S_AXI, and change the Master option to /processing_system7_0/M_AXI_GP1, change the

Clock source for driving interconnect IP, Clock source for Master interface, and Clock source for
Salve interface to /processing_system7_O/FCLK_CLK1 (140 MHz) as they all run in the same
clock domain, and click OK

(' XI LINX www.xilinx.com/university Zynq 3-3

xup@xilinx.com
© copyright 2018 Xilinx

Extending Memory Space with Block RAM Lab Workbook

4 Run Connection Automation]

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration
options on the right.

Description
~ ® All Automation (3 out of 4 selected)
~ /W ai_bram_ctrl_0
¥ 1+ BRAM_PORTA Options.
¥ { BRAM_PORTE

1
Master Iprocessing_system7_OM_AX_GP1 | |

Connect Slave interface (faxi_bram_ctri_0/S_AXI) to a selected Master address space.

~ || processing_system7_0
Bridge IP Auto v
I M_AYXI_GP1
Clock source for driving Interconnect IP | /processing_system7_O/FCLK_CLK1T (140 MHz)
Clock source for Master interface Iprocessing_system7_O/FCLK_CLK1 (140 MHz)
Clock source for Slave interface Iprocessing_system7_OFCLK_CLK1 (140 MHz) w
< >

\
4

(

.

Figure 3. Connecting AXI BRAM Controller to M_AXI_GP1 to run at faster clock speed

Notice that an instance of AXI SmartConnect and Processor System Reset are added, and the
M_AXI_GP1_ACLK is connected to FCLK_CLK1.

@ _bram cil 0 bram

BRaM_FORTA +

b BRAM FORTA rata by
|||+ =rRam FoRTa rab busy

VAT T Bock Memory Generator

leda
=1 pa7_0_140M .
L pa7 0 -+ 5 _ax
m
s _aclk GF leda_dnia
sowest_zne_ck b _reset i *l =4 -
e - 5 a_arcscm
ot reset in bus sruct mecqoo]
o aux_resct_in peripharal_resef o) FGPID
= b dobug sie_r Inkroonnect arcsemino] nstone
= cem_locken penpheral ansenio iy
Processor Sysem Resel T s "
! 5 an_ack arm + |} {> bing_dois
5 a4_arcacm
procesang_system?_0
AUl Interconnect AR GPID
ooa + || > DOR
FrEDI0 + || D FIXED_IO
[- n_axi_aro + [wiches
_A1_GFO_ 4301 G o |l
s aeracu 27 NG o .
L AOH_GR FOLK CLED |+ s ax
Fous ot p—t— 5 a_aclk ara 4+ |} > sws_2ots
Fox REsETo M g 5 a4_arcacm
ZYNQT Proceasng System)
m=t_pa?_0_100M
dowest_sne_ch b _react [
ot eset in bus sruct mecqoo]
au_reset_n penpheral rescqon)
b dcbig_sye_rat :_arcas o]
dem_lodked peripheral amscnil:

Proceasor Syatem Reset

Figure 4. Clocking network connections
3-1-6. Double-click on the axi_bram_ctrl_0 instance to open the configuration form.

3-1-7. Set the Data Width to 64.

Zyng 3-4 www.xilinx.com/university i‘ XI LINX

xup@xilinx.com
© copyright 2018 Xilinx

Lab Workbook Extending Memory Space with Block RAM

AXI Protocol Axld 4
Data Width 12 v
Memory Depth (Auto) 32
B4
.
D Width (Auta) 128

Figure 5. Setting the BRAM controller data width to 64

3-1-8. Click OK.
3-2. Using the Address Editor tab, set the BRAM controller size to 64KB.
Validate the design.
3-2-1. Select the Address Editor tab and notice that the BRAM controller memory space is 8K.
3-2-2. Click in the Range column of the axi_bram_ctrl_0 instance and set the size as 64K.
Diagram » Address Editor b
Q = =
Cell Slave Interface Base Mame Offset Address Range High Address
W processing_systemv_0
v [Data (22 address bits : 0x40000000 [1G],0x20000000 [1G]
buttons S_AXl Reg 0x4120_0000 G4K * 0xd120_FFFF
leds S_AXl Reg 0x4121_0000 G4K * 0xd121 FFFF
switches S_AXl Reg 0x4122_ 0000 G4K ~ 0xd122 FFFF
axi_bram_ctrl_0 S_Axl Memo 0xE8000_0000 3k +~| 0x8000_1FFF
Bk~
16K
22K
B4K
128K
Figure 6. AXI BRAM space assignment
Notice that the address range changed to 0x80000000-0x8000FFFF. This is inthe M_GP1
addressing space.
3-2-3. Select the Diagram tab, and click on the & (Validate Design) button to make sure that there are
no errors.
Generate the Bitstream Step 4
4-1-1. Click on the Generate Bitstream to run the synthesis, implementation, and bit generation
processes.
4-1-2. Click Save if prompted to save the project, and Yes to run the processes. Click OK to launch the

runs.

(' XI LINX www.Xilinx.com/university Zynq 3-5

xup@xilinx.com
© copyright 2018 Xilinx

Extending Memory Space with Block RAM Lab Workbook

4-1-3. When the bitstream generation process has completed successfully, click Cancel.

Generate Applications in the SDK Step 5

5-1. Export the implemented design, and start SDK

5-1-1. Export the hardware configuration by clicking File > Export > Export Hardware...

5-1-2. Click the box to Include Bitstream and click OK (Click Yes if prompted to overwrite the previous
module)

5-1-3. Launch SDK by clicking File > Launch SDK and click OK

5-1-4. Right-click on the lab1 and standalone_bsp_0 and system_wrapper_hw_platfrom_0 projects
in the Project Explorer view and select close project.

5-2. Create an empty application project, named lab3, and import the provided
lab3.c file.

5-2-1. Select File > New > Application Project.

5-2-2. In the Project Name field, enter lab3 as the project name.

5-2-3. Use the default settings to create a new BSP and click Next.

5-2-4. Select the Empty Application template and click Finish.
The lab3 and lab3_bsp projects will be created in the Project Explorer window of SDK.

5-2-5. Select lab3 > src directory in the project view, right-click, and select Import.

5-2-6. Expand the General category and double-click on File System.

5-2-7. Browse to {sources}\lab3 folder.

5-2-8. Select lab3.c and click Finish.
A snippet of the source code is shown in the following figure. It shows that we write a pattern to
the LED port and execute a software delay loop. Repeat for 16 times. It also shows the code
(greyed) which will be used in Lab5.

Zynq 3-6 www.xilinx.com/university (' XILINX

xup@xilinx.com
© copyright 2018 Xilinx

Lab Workbook Extending Memory Space with Block RAM

#include "xparameters.h”
#include "xgpio.h"
#ifdef MULTIBOOT
#include "xdevcfg.h”

int main (void)
{
XGpio leds;
int j=0;
int i;
xil printf("-- Start of the Program --\r\n"};
XGpio_Initialize(&leds, XPAR_LEDS_DEVICE_ID);
XGpio_SetDataDirection(&leds, 1, @); // output
for(j=0; j<16; j++) {
XGpio_Discretelrite(&leds, 1, j);
for (i=0; 1<99999999; i++);
¥
xil_printf("End of the program\r\n");
#ifdef MULTIBOOT
print("Loading master image\r\n");
// Driver Instantiations
XDcfg XDecfg @;
u32 MultiBootReg = @;
#define PS_RST_CTRL_REG (XPS_SYS_CTRL_BASEADDR + 0x200)
#define PS RST MASK @x1 /* PS software reset */
#define SLCR_UNLOCK_OFFSET ©x08

// Initialize Dewvice Configuration Interface
XDcfg_Config *Config = XDcfg_LookupConfig(XPAR_XDCFG_© DEVICE_ID);
KDcfg_Cfelnitialize(&XDcfeg_ 8, Config, Config-»BaseAddr);

MultiBootReg = @; // Once done, boot the master image stored at ©xfcoo_oeae
Xil_Out32(0xF3000000 + SLCR_UNLOCK_OFFSET, @xDFODDF@D); // unlock SLCR
XDcfg_WriteReg(XDcfg ©.Config.BaseAddr, XDCFG_MULTIBOOT_ADDR_OFFSET, MultiBootReg); // write to multiboot reg
// synchronize
_asm__(
"dsbyn\t"
"isb"
)
// Generate soft reset
Xil_Out32(PS_RST_CTRL_REG, PS_RST_MASK);
#endif
return 9;

}

Figure 7. Source Code

Test in Hardware Step 6

6-1.

Connect and power up the board. Establish the serial communication using
the SDK Terminal tab. Program the FPGA.

6-1-1. Connect and power up the board.

6-1-2. In SDK, select Xilinx > Program FPGA and click the Program button to program the FPGA.

6-1-3. Selectthe = Terminal tap |f it is not visible then select Window > Show view > Terminal.

6-1-4. Clickon 47 to initiate the serial connection and select the appropriate COM port (depending on
your computer). Configure it with 115200 baud rate.

(: XILINXQ Www;(ﬂgrg);(c;iﬁrr&/}ér;ir\:]ersity Zynq 3-7

© copyright 2018 Xilinx

Extending Memory Space with Block RAM Lab Workbook

6-2. Run the lab3 application.

6-2-1. Select the lab3 project in Project Explorer, right-click and select Run As > Launch on Hardware
(System Debugger). Click Yes to terminate the previous run.

The application (lab3.elf) will be downloaded into the target device, execute ps7_init, and execute.

6-2-2. You should see the on-board LEDs changing patterns at roughly a one second delay rate.

6-3. Modify the linker scipt to use the ps7_ddr_0 for the code and data sections,
and the BRAM for the Heap and Stack segments. Change the loop limit
from 99999999 to 999999. Execute the program.

6-3-1. Select the lab3 application in the Project Explorer view.

6-3-2. Right-click and select Generate Linker Script.

6-3-3. Change the code and Data sections to ps7_ddr_0 and the Heap and Stack segment memory to
axi_bram_ctrl_0_MemO.

6-3-4. Click the Generate button.

6-3-5. Click the Yes button to overwrite.

6-3-6. Change the loop limit from 99999999 to 9999999. Save changes so the program recompiles.

6-3-7. Select the lab3 project in Project Explorer, right-click and select Run As > Launch on Hardware
(System Debugger).

Click OK to terminate the exisiting run and relaunch if shown.

6-3-8. You should see the on-board LEDs changing patterns very slowly (about 5 seconds).

6-3-9. Change the loop limit from 9999999 to 999999. Save changes so the program recompiles.

6-3-10. Select the lab3 project in Project Explorer, right-click and select Run As > Launch on Hardware
(System Debugger).

Click Yes to terminate the exisiting run.

6-3-11. You should see the on-board LEDs changing patterns relatively faster (about 1 seconds).

6-3-12. Close the SDK program by selecting File > Exit.

6-3-13. Close the Vivado program by selecting File > Exit.

6-3-14. Turn OFF the power on the board.

Zyng 3-8 www.xilinx.com/university (' XILINX

xup@xilinx.com
© copyright 2018 Xilinx

Lab Workbook Extending Memory Space with Block RAM

Conclusion

This lab led you through adding BRAM memory in the PL section thereby extending the total memory
space available to the PS. You have verified the functionality by creating an application, targeting the
stack and heap sections to the added BRAM, and executing the application.

s xilinx.com/universit s
iA X”_INXJ waﬂéfg);ﬁrrg(ir;lr\:}ersw g
© copyright 2018 Xilinx

