Lab Workbook Building a Complete Embedded System

Building a Complete Embedded System

Introduction

This lab guides you through the process of using Vivado and IP Integrator to create a complete Zynq
ARM Cortex-A9 based processor system targeting either the PYNQ-Z1 or PYNQ-Z2 boards. You will use
the Block Design feature of IP Integrator to configure the Zynq PS and add IP to create the hardware
system, and SDK to create an application to verify the design functionality.

Objectives

After completing this lab, you will be able to:

e Create an embedded system design using Vivado and SDK flow

e Configure the Processing System (PS)

e Add Xilinx standard IP in the Programmable Logic (PL) section

e Use SDK to build a software project and verify the design functionality in hardware.

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises eight primary steps: You will create a top-level project using Vivado, create the
processor system using the IP Integrator, add two instances of the GPIO IP, validate the design, generate
the bitstream, export to the SDK, create an application in the SDK, and, test the design in hardware.

Design Description

In this lab, you will design a complete embedded system consisting of the ARM Cortex-A9 PS, and three
standard GPIO IPs to connect to on-board LEDs, push-buttons, and switches. The following block
diagram represents the completed design (Figure 1).

-

PL

AX|4-Lite
- GPIO Buttons
AXI
AXI4-Lit
Interconnect s GPIO
Block

AXl4-Lite

GPIO

1

Figure 1. Completed Design

s xilinx.com/universit S
iA XILINX@ waﬂéfg;ﬁrrs(iglr\;ersw g
© copyright 2018 Xilinx

Building a Complete Embedded System Lab Workbook

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4:
Create a Create the Add Two Validate the

Vivado |:> System using |:> Instances of |:> Design |:>
Project IP Integrator GPIO

Step 5: Step 6: Step 7: Step 8:
Generate the Export the Create an Test in

Bitstream Design to Application in Hardware
SDK SDK

In the instructions below;
{sources} refers to: C:\xup\adv_embedded\2018 2 zyng_sources
{labs} refers to: C:\xup\adv_embedded\2018 2 zynq_labs

Board support for PYNQ-Z1 and PYNQ-Z2 are not included in Vivado 2018.2 by default. The relevant zip
file need to be extracted and saved to: {Vivado installation}\data\boards\board_files\.

These files can be downloaded from the XUP webpage
(http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-adv-embedded-design-
zyng.html) where this material is also hosted.

Create a Vivado Project Step 1

1-1. Launch Vivado and create an empty project targeting the PYNQ-Z1 or
PYNQ-Z2 board, selecting Verilog as a target language.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2018.2 >
Vivado 2018.2

1-1-2. Click Create Project to start the wizard. You will see the Create A New Vivado Project wizard
page. Click Next.

1-1-3. Click the Browse button of the Project Location field of the New Project form, browse to {labs},
and click Select.

1-1-4. Enter labl in the Project Name field. Make sure that the Create Project Subdirectory box is
checked. Click Next.

Zynq 1-2 www.xilinx.com/university 3l
xup@xilinx.com (A XI I—INXw

© copyright 2018 Xilinx

Lab Workbook Building a Complete Embedded System

o vev o S S

Procject Name

Enter a name for your project and specify a directory where the project data files '
will be stored.

Project name: |lab1 |

Project location: C:up/adv_embedded/2018_2_zyng_labs IZ‘ |

+' Create project subdirectory

Project will be created at: C:upfadvy embedded/2018 2 zvng labsilabl

Fnt
L E—— 4

Figure 2. Project Name Entry

1-1-5. Select the RTL Project option in the Project Type form, and click Next.

1-1-6. Select Verilog as the Target Language and Simulation Language in the Add Sources form, and
click Next.

1-1-7. Click Next to skip adding constraints.
1-1-8. In the Default Part form, click Boards filter.

1-1-9. Select www.digilentinc.com for the PYNQ-Z1 board, tul.com.tw for the PYNQ-Z2 board in the
Vendor field, select PYNQ-Z1 or pyng-z2, and click Next.

s xilinx.com/universit S
& XILINX. wha ik comuniversity v
© copyright 2018 Xilinx

Building a Complete Embedded System Lab Workbook

Default Part
Choose a default Xilinx part or board for your project. This can be changed later. '

Parts | Boards

Reset All Filters
Vendor: | tul.com.tw w Mame: | All Remaining w Board Rev: | Latest w
Search: hd
Display Mame Preview Vendor File Version Part
pyng-z2

tul.com.tw 1.0 ¥c7z020clg400-1
< >

Py

Figure 3. Board Selection (pynq-z2)

1-1-10. Click Finish to create an empty Vivado project.

Creating the Hardware System Using IP Integrator Step 2

2-1. Create a block design in the Vivado project using IP Integrator to generate
the ARM Cortex-A9 processor based hardware system.

2-1-1. Inthe Flow Navigator, click Create Block Design under IP Integrator.

2-1-2. Name the block system and click OK.

2-1-3. Click onthe *+ button.

2-1-4. Once the IP Catalog is open, type zy into the Search bar, and double click on the ZYNQ7
Processing System entry to add it to the design.

2-1-5. Click on Run Block Automation and click OK to automatically configure the board presets.

Zyng 1-4 www.xilinx.com/university 3l
xup@xilinx.com iA XI LINXm

© copyright 2018 Xilinx

Lab Workbook Building a Complete Embedded System

¢ Run Block Automation Lﬁ

Automnatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its
configuration options on the right. '

Q - -
a -

~ | All Automation (1 out of 1 selected)

Description

This option sets the board preset on the Processing System. All current properties will be
+ processing_system7_0 overwritten by the board preset This action cannot be undone. Zynqg7 block automation
applies current board preset and generates external connections for FIXED_IO, Trigger
and DDR interfaces.

NOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box,
if you wish to retain previous configuration.

Instance: /processing_system7_0

Options
Make Interface External: FIXED_IO, DDR
Apply Board Preset: ¥
Cross TriggerIn: Disable v

Cross Trigger Out: Disable

2

k

Figure 4. Zynqg Block Automation View (pyng-z2)

2-1-6. Double click on the Zyng block to open the Customization window for the Zynq processing
system.
A block diagram of the Zyng PS should now be open, showing various configurable blocks of the
Processing System.
At this stage, designer can click on various configurable blocks (highlighted in green) and change
the system configuration.

i' XILINX www.Xilinx.com/university Zynq 1-5

-~ @ xup@xilinx.com

© copyright 2018 Xilinx

Building a Complete Embedded System Lab Workbook

¢ Re-customize IP EY

ZYNQ7 Processing System (5.5)

© Documentation £} Presets IP Location &¥ Import XPS Settings

Page Navigator - Zyng Block Design Summary Report
Zyng Block Design
ynQ g J—
/O Periphesals General
! SPIO Semings Apgiication Processar Unit (APU)
P3S-PL Configuration T [Swor |
o boo
e e .
Peripheral IO Pins (150} EEEEETT N aar— ARM Conex -A9 ARM Gontex -A9
.—L System Level cPU CPU
CAN 1 | Contral Regs
MIO Configuration [R0 V| L
e = (L] ax
MU GPIO S i J.l GIC I Snoog Control wnit x
Clock Configuration [l _SM_QI DMAZ =
R il L = K | o | ! 512 KB L2 Cache and Cantrolier Porta
Tseo___ |
DDR Configuration USB1 | oM 255 K8
ENETO Y — CoreSight IMderconnect SRAM
ENET 1 Gentral Components
SMC Timing Calculation B::lsl Interconnect *
T
(53:16) BIE
Interrupts < Memery Interfaces
P
—— Programmable DOR2/3LPDDR2
— we || |G (e]
Inferconne ct
OMA §ync [ETE[HE]
N 7
Clocs [ilsfe v | Processing System(PS
Ressts | I Generaton FRENENEN g Sys! }
[TETFTET S [T KT EL J— 20 DMA RO | Hign Performames
Mended bGP Condg XADC
Mo EMO) . PEPL A1 TV e PR AXI 320/84b Slave
e Master Stave SHA Ports
Ports
Programmable Logic(PL}

OK | | Cancel

Figure 5. Zyng Processing System Configuration View (pynqg-z2)

2-2. Configure the I/O Peripherals block to only have UART 0 support.
2-2-1. Click on the MIO Configuration panel to open its configuration form.

2-2-2. Expand the I/O Peripherals (and GPIO).

2-2-3. Deselect all the peripherals except UART 0 (Deselect ENET 0, USB 0, SD 0, and GPIO).

Zyng 1-6 www.xilinx.com/university
xup@xilinx.com i: XILINX“
© copyright 2018 Xilinx

Lab Workbook Building a Complete Embedded System

MIC Canfiguration Peripheral 10 Signal

~ |iQ Peripherals
Clock Configuration

? EMET O
DDR Configuration > EMNET 1
UsB D
SMC Timing Calculation USB 1
Interrupts » sDo
> 501
» ¥ UART O MO 14 .15 w
? UART 1
12C0
12C 1
> SPI0
? SPI1
> CAND
? CAN 1
~ GPIO
GPIO MIO

EMIO GPIO (Width)
?
?
?

Figure 6. Selecting only UART 0 Peripheral of PS

2-2-4. Click OK.
The configuration form will close and the block diagram will be updated as shown below.

processing_system7_0

DOR + ||j=~[_> DDR
FIXED_ 10 + ||j====[> FIXED_IO

M_AX] GPO_ACLK ZYNQ‘ M_AXI_GPO +

FCLK_CLKO fm=
FCLK_RESETO_N @

ZYMNQT Processing System
Figure 7. ZYNQT7 Processing System configured block

2-3. Add one instance of GPIO, name it buttons, and configure for the board.
Connect the block to the Zynq.

2-3-1. Clickthe *+ button and search for AXI GPIO in the catalog.

2-3-2. Double-click the AXI GPIO to add an instance of the core to the design.

s xilinx.com/universit SR
iA XILINXQ waﬂgfg);ﬁrr&téglr\:}ersw g
© copyright 2018 Xilinx

Building a Complete Embedded System

Lab Workbook

2-3-3.

2-3-4.

2-3-5.

2-3-6.

2-3-7.

2-3-8.

2-4,

2-4-1.

2-4-2.

Click on the AXI GPIO block to select it, and in the Block properties tab, change the name to

buttons.

Double click on the AXI GPIO block to open the customization window. Under Board Interface, for
GPIO, click on Custom to view the dropdown menu options, and select btns 4Bits for the PYNQ-

Z2 or the PYNQ-Z1 board.

As the board was selected during the project creation, and a board support package is available

for these boards, Vivado has knowledge of available resources on the board.

Click the IP Configuration tab. Notice the GPIO Width is set to 4 (PYNQ-Z1 and PYNQ-Z2) and
is greyed out. If a board support package was not available, the width of the IP could be

configured here.

Click OK to finish configuring the GPIO and to close the Re-Customize IP window.

Click on Run Connection Automation, and select buttons (which will include GPIO and S_AX]I)

Click on GPIO and S_AXI to check the default connections for these interfaces.

¢ Run Connection Automation

=)

options on the right.

Q - .
a -

~ Al Automation (2 out of 2 selected)

Description

Connect Board Part Interface to IP interface.
v | buttons

Interface: /buttons/GPIO
/

Y|} S_AX
- Options

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration

Select Board Part Interface | bins_4bits (4 Buftons

Figure 8. Connection Automation for the GPIO (PYNQ-Z2)

Click OK to automatically connect the S_AXI interface to the Zynq GPO port (through the AXI

interconnect block), and the GPIO port to an external interface.

Notice that after block automation has been run, two additional blocks that are required to
connect the blocks, Processor System Reset, and AXI Interconnect have automatically been

added to the design.

Add another instance of GPIO, name the instance leds, configure it and

connect it to the Zynq.
Add another instance of the GPIO peripheral.

Change the name of the block to leds.

Zyng 1-8 www.xilinx.com/university

xup@xilinx.com
© copyright 2018 Xilinx

& XILINX.

Lab Workbook Building a Complete Embedded System

2-4-3. Double click on the leds block, and select leds 4bits (PYNQ-Z1 and PYNQ-Z2) for the GPIO
interface and click OK.

2-4-4. Click on Run Connection Automation
2-4-5. Click leds, and check the connections for GPIO and S_AXI as before

2-4-6. Click OK to automatically connect the interfaces as before.

Notice that the AXI Interconnect block has the second master AXI (M01_AXI) port added and
connected to the S_AXI of the leds.

2-5. Add another instance of GPIO, name the instance switches, configure it
and connect it to the Zynq.

2-5-1. Add another instance of the GPIO peripheral.
2-5-2. Change the name of the block to switches.

2-5-3. Double click on the switches block, and select sws 2bits (PYNQ-Z1 and PYNQ-Z2) for the GPIO
interface and click OK.

2-5-4. Click on Run Connection Automation
2-5-5. Click switches, and check the connections for GPIO and S_AXI as before

2-5-6. Click OK to automatically connect the interfaces as before.

Notice that the AXI Interconnect block has the third master AXI (M02_AXI) port added and
connected to the S_AXI of the leds.

3l www.Xilinx.com/university Zynqg 1-9
i‘ XI LINX-“ xup@xilinx.com

© copyright 2018 Xilinx

Building a Complete Embedded System Lab Workbook

At this stage the design should look like as shown below.

buttons

rst_ps7_0_100M
ps7_0_axi_periph 4 S_AXI
slowest_sync_clk mb_reset = F; — = s_axi_ack GPIO 4 ||——> bins_4bits
ext_reset_in bus_struct_reset[0:0] = |4 S00_AX| = s_axi_aresetn
@ aux_reset_in peripheral_reset{0:0] = —== ACLK
= mb_debug_sys_rst int t n[0:0] ARESETM AXI GPIO
={ dem_locked ipheral_anesetnf:0] = S00_ACLK leds
500 ARESETN MM oo At 4 fis
Processor System Reset b= MOO_ACLK H=E MO1_AXI 4 S_AXI
MOO_ARESETN gy MOZAXI 4 fi s_ani_achk GPIO 4 |||l leds_4bis
p—== MO1_ACLK p—f) s_axi_aresetn
MO1_ARESETN
= MO2_ACLK AXI GPIO
M02_ARESETN swilches
AXl Interconnect + 5_a%
s_axd_ack GPIO 4 |||——> sws_2bits
) 5 _axi_aresetn
processing_system?_0
AX| GPIO
DoR ||} [DDR
- FIXED_IO +||| [FIXED_IO
M_AXI_GPD_ACLK ZYNQ M_AXI_GPO o fii=dt
FCLK_CLKO
FCLK_RESETO_N
ZYNQT Processing System

Figure 9. Completed design

2-6. Verify that the addresses are assigned to the two GPIO instances and
validate the design for no errors.
2-6-1. Select the Address Editor tab and see that the addresses are assigned to the three GPIO
instances. They should look like as follows.
Diagram » Address Editor b
Q = =
Cell Slave Interface Base Wame Offset Address Range High Address
~ IF processing_system7_0
~ B Data (22 address bits : 0x40000000[13])
== buttons S_AXI Reg 0x4120_0000 G4K * 0x4120_FFFF
oo |eds 5_AX Reg 0x4121_0000 B4K ~ 0xd4121 FFFF
oo gwitches S_AXI Reg 0x4122_0000 GdK v (0x4122_ FFFF
Figure 7. Assigned addresses
The addresses should be in the 0x40000000 to Oxbfffffff range as the instances are connected to
M_AXI_GPO port of the processing system instance.
2-6-2. Select the Diagram tab, and click on the & (Validate Design) button to make sure that there are
no errors.
Ignore warnings.
2-6-3. Select File > Save Block Design to save the design.
Zyng 1-10 www.xilinx.com/university i' XILINX

xup@xilinx.com
© copyright 2018 Xilinx

Lab Workbook Building a Complete Embedded System

2-6-4. Since all 10 pins are board-aware no additional user constraints are need.

Generate the Bitstream Step 3

3-1. Create the top-level HDL of the embedded system. Add the provided
constraints file and generate the bitstream.

3-1-1. In Vivado, select the Sources tab, expand the Design Sources, right-click the system.bd and
select Create HDL Wrapper...

Sources x Design Signals Boarc ? 00
Q= ¢+ &
A Design Sources (1

> system_i : system (systerm. bd) (1

> Constraints

> Simulation Sources (1

Figure 11. Selecting the system design to create the wrapper file

3-1-2. Click OK when prompted to allow Vivado to automatically manage this file.

The wrapper file, system_wrapper.v, is generated and added to the hierarchy. The wrapper file will be
displayed in the Auxiliary pane.

Sources » Design Signals Boarc ? _00
Q = % + o
™ Design Sources (1
~ @5 system_wrapper (system_wrappery) (1
™ system_i : system (systerm. bd) (1

> @ system (system.y
» Constraints

> Simulation Sources (1

Figure 82. Design Hierarchy View

3-1-3. Click on the Generate Bitstream in the Flow Navigator pane to synthesize and implement the
design, and generate the bitstream. Click Save and Yes if prompted. Click OK to launch the runs.

3-1-4. When the bitstream generation is complete, click Cancel.

Export the Design to the SDK Step 4

4-1. Exporting the design and launch SDK

4-1-1. Export the hardware configuration by clicking File > Export > Export Hardware... Tick the box to
include the bitstream and click OK.

s xilinx.com/universit S
(A XILINXQ WWWX):JFI)% ;ﬁrr&.tér;lr\:]ersw yna
© copyright 2018 Xilinx

Building a Complete Embedded System

Lab Workbook

4-1-2.

¢ Export Hardware ﬁ

Export hardware platform for software
development taals. #

v Include bitstream

Exportto: e =Local to Project= 4

I/;\I

k

Figure 9. Exporting the hardware

Launch SDK by clicking File > Launch SDK and click OK

(Launching SDK from Vivado will automatically load the SDK workspace associated with the
current project. If launching SDK standalone, the workspace will need to be selected.)

Generate an Application in SDK

Step 5

5-1. Generate a board support package project with default settings and default
software project name.
SDK should open and automatically create a hardware platform project based on the
configuration exported from Vivado. A board support package and software application will be
created and associated with this hardware platform.
5-1-1. Select File > New > Board Support Package
Xilinx Board Support Package Project E
Create a Board Support Package.
Project name: standalone_bsp_0
Use default location
C\xup\adv_embedded\2018 2 zyng_labs\labl\labl.sdk\standalone_bsp 0 Browse...
default
Target Hardware
Hardware Platform: [system_wrapper_hw _platform_0 ']
CPU: Ips?_co rtexad_0 - l
32-bit ~
Board Support Package OS
freertos10_xilinx Standalane is a simple, low-level software layer. It provides access to basic processor
features such as caches, interrupts and exceptions as well as the basic features of a hosted
environment, such as standard input and output, profiling, abort and exit.
® [Finish] l Cancel
Figure 104. Create BSP
Zyng 1-12 www.xilinx.com/university

xup@xilinx.com
© copyright 2018 Xilinx

& XILINX.

Lab Workbook Building a Complete Embedded System

5-1-2.

5-1-3.

5-1-4.

5-2.

5-2-1.

5-2-2.

5-2-3.

Click Finish with the default settings selected (using the Standalone operating system).

This will open the Software Platform Settings form showing the OS and libraries selections.

Click OK to accept the default settings as we want to create a standalone_bsp_0 software
platform project without any additional libraries.

The library generator will run in the background and will create the xparameters.h file in the
labl.sdk\standalone_bsp 0\ps7_cortexa9 O\include directory.

Create an empty application project, named labl, and import the provided
labl.c file.

Select File > New > Application Project.
In the Project Name field, enter lab1 as the project name.

Select the Use existing option in the Board Support Package field and then click Next.

i| Application Project ’-f I
Create a managed make application project.

Project name:

Use default location
Chxup\adv_embedded\2018_2_zyng_labs\labl\labl.sdk\labl Browse...

default -

OS Platform: lstandalone VI

Target Hardware

Hardware Platform: lsystem_wrapper_hw _platform_0 'l ’New...l

Processor: l ps7_cortexad_ 0 - l

Target Software

Language: @C @ C++
32-bit -
N/A -

Board Support Package: (7 Create New | labl_bsp

I-._G}_.- Use existing |standalone_bsp_0 hd

@' < Back l Mext > l [Finish l l Cancel

Figure 11. Create a Blank Application Project

i' XI LINX www.xilinx.com/university Zynqg 1-13

xup@xilinx.com
© copyright 2018 Xilinx

Building a Complete Embedded System

Lab Workbook

5-2-4. Select the Empty Application template and click Finish.
The lab1l project will be created in the Project Explorer window of SDK.

5-2-5. Select labl > src directory in the project view, right-click, and select Import.

5-2-6. Expand the General category and double-click on File System.

5-2-7. Browse to the {sources}\lab1 folder.

5-2-8. Select the labl.c source file and click Finish.
A snippet of the source code is shown in the following figure. Note the greyed out code will be
used in Lab5. The code reads from the switches, and writes to the LEDs. The BTN is read, and
written to the LED.

Zyng 1-14 www.xilinx.com/university

xup@xilinx.com
© copyright 2018 Xilinx

& XILINX.

Lab Workbook Building a Complete Embedded System

#include "xparameters.h”
#include "xgpio.h"
#ifdef MULTIBOOT
#include "xdevcfg.h"
#endif

1/ e
int main (void)

{

XGpio sws, leds, btns;
int i, sws_check, btns_check;

xil printf("-- Start of the Program --\r\n"};

// AXI GPIO switches Initialization

XGpio Initialize(&sws, XPAR_SWITCHES DEVICE ID);

XGpio SetDataDirection(&sws, 1, @xffffffff); // input
// AXI GPIO leds Initialization

XGpio Initialize(&leds, XPAR_LEDS DEVICE_ID);
XGpio_SetDataDirection(&leds, 1, @); // output
J/f AXI GPIO buttons Initialization

XGpio_Initialize(&btns, XPAR BUTTONS DEVICE ID);
XGpio_SetDataDirection(&btns, 1, @xffffffff); // input

xil_printf("-- Press any of BTN@-BTN3 to see corresponding output on LEDs --\r\n");
xil_printf("-- Set slide switches to 8x83 to exit the program --\r\n");

while (1)

{
btns_check = XGpio_ DiscreteRead(&btns, 1);
XGpio_DiscreteWrite(&leds, 1, btns_check);
sws_check = XGpio DiscreteRead(&sws,1);
if((sws_check & @x@3)==0x083)

break;
for (i=0; i<9999999; i++); // delay loop
}
xil printf("-- End of Program --\r\n"};

#ifdef MULTIBOOT
// Driver Instantiations
XDctg XDcfg_0;
u32 MultiBootReg = @;
#define PS_RST CTRL_REG (XPS_SYS_CTRL_BASEADDR + ©x208)
#define PS_RST_MASK Ox1 /* PS software reset */
#define SLCR_UNLOCK_OFFSET @x@8

// Initialize Device Configuration Interface
XDcfg_Contig *Config = XDcfg lLookupConfig(XPAR_XDCFG_@ DEVICE_ID);
XDcfg_CfgInitialize(&XDcfg_@, Config, Config->BaseAddr);

MultiBootReg = @; // Once done, boot the master image stored at @xfc@0_o00ee
Xil Out32(@xF800P8e8 + SLCR_UNLOCK_OFFSET, @xDFEDDF@D); // unlock SLCR
XDcfg_WriteReg(XDcfg_@.Config.BaseAddr, XDCFG_MULTIBOOT_ADDR_OFFSET, MultiBootReg); // write to multiboot
// synchronize
__asm__
"dsb\n\t"
"isb"

);
Xil_Out32(PS_RST_CTRL_REG, PS_RST_MASK};
#endif
return 9;

¥

Figure 16. Snippet of Source Code

3l www.xilinx.com/university Zynq 1-15
i‘ XI LINX“‘ xup@xilinx.com

© copyright 2018 Xilinx

Building a Complete Embedded System Lab Workbook

Test in Hardware Step 8

6-1. Connect and power up the board. Establish serial communications using
the SDK’s Terminal tab. Verify the design functionality.

6-1-1. Connect and power up the board.

6-1-2. Selectthe = Terminal tah If it is not visible then select Window > Show view > Other >
Terminal > Terminal.

6-1-3. Clickon *' and select appropriate COM port (depending on your computer), and configure the
terminal with the parameters as shown below.

[Terminal Settings ﬁ1

View Settings:

View Title: Terminal 1

Encoding: [50-8859-1 -

Connection Type:

ISeriaI vI
Settings:

Port: COMB0 -

Baud Rate: 115200 &

Data Bits: lS v]
Stop Bits: ll ']
Parity: lNone v]

' Flow Control: lNDne '] i

Timeout (sec): 5

OK] l Cancel

b

Figure 17. SDK Terminal Settings

6-1-4. Select Xilinx > Program FPGA and then click the Program button.

6-1-5. Make sure that the SWO0-1 are not set to “11”.

6-1-6. Select the lab1 project in the Project Explorer, right-click and select Run As > Launch on
Hardware(System Debugger) to download the application, execute ps7_init, and execute
lab1.elf.

Zyng 1-16 www.xilinx.com/university 3l
xup@xilinx.com iA XI LINXm

© copyright 2018 Xilinx

Lab Workbook Building a Complete Embedded System

6-1-7. You should see the following output on the Terminal console.

SDK Log | & Terminal 1 3 = NEEN: N
Serial: (COM90, 115200, 8, 1, None, None - CONNECTED) - Encoding: (ISO-8859-1)

-- Start of the Program --
-- Press any of BTN@-BTN3 to see corresponding output on LEDs --
-- Set slide switches to @x83 to exit the program --

Figure 18. SDK Terminal Output
6-1-8. Press the BTNO-BTN3 (PYNQ-Z1, PYNQ-Z2) and see the corresponding LED light up.
6-1-9. Set the two slide switches on PYNQ-Z1 or PYNQ-Z2 to the ON position to exit the program.
6-1-10. Close SDK and Vivado programs by selecting File > Exit in each program.

6-1-11. Turn OFF the power to the board.

Conclusion

In this lab, you created an ARM Cortex-A9 processor based embedded system using the Zynq device for
the PYNQ-Z1/PYNQ-Z2 board. You instantiated the Xilinx standard GPIO IP to provide input and output

functionality.
You created the project in Vivado, created the hardware system using IPI, implemented the design in

Vivado, exported the generated bitstream to the SDK, created a software application in the SDK, and
verified the functionality in hardware after programming the PL section and running the application from

the DDR memory.

s xilinx.com/universit S EE
(A X”_INXQ WWWX):JFI)% ;ﬁrrg(.térgr\:]ersw yna
© copyright 2018 Xilinx

