
Lab Workbook Building a Complete Embedded System

 www.xilinx.com/university Zynq 1-1
 xup@xilinx.com
 © copyright 2018 Xilinx

Building a Complete Embedded System

Introduction

This lab guides you through the process of using Vivado and IP Integrator to create a complete Zynq
ARM Cortex-A9 based processor system targeting either the PYNQ-Z1 or PYNQ-Z2 boards. You will use
the Block Design feature of IP Integrator to configure the Zynq PS and add IP to create the hardware
system, and SDK to create an application to verify the design functionality.

Objectives

After completing this lab, you will be able to:
 Create an embedded system design using Vivado and SDK flow
 Configure the Processing System (PS)
 Add Xilinx standard IP in the Programmable Logic (PL) section
 Use SDK to build a software project and verify the design functionality in hardware.

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises eight primary steps: You will create a top-level project using Vivado, create the
processor system using the IP Integrator, add two instances of the GPIO IP, validate the design, generate
the bitstream, export to the SDK, create an application in the SDK, and, test the design in hardware.

Design Description

In this lab, you will design a complete embedded system consisting of the ARM Cortex-A9 PS, and three
standard GPIO IPs to connect to on-board LEDs, push-buttons, and switches. The following block
diagram represents the completed design (Figure 1).

Figure 1. Completed Design

Building a Complete Embedded System Lab Workbook

Zynq 1-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2018 Xilinx

General Flow for this Lab

In the instructions below;
{sources} refers to: C:\xup\adv_embedded\2018_2_zynq_sources
{labs} refers to: C:\xup\adv_embedded\2018_2_zynq_labs

Board support for PYNQ-Z1 and PYNQ-Z2 are not included in Vivado 2018.2 by default. The relevant zip
file need to be extracted and saved to: {Vivado installation}\data\boards\board_files\.

These files can be downloaded from the XUP webpage
(http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-adv-embedded-design-
zynq.html) where this material is also hosted.

Create a Vivado Project Step 1

1-1. Launch Vivado and create an empty project targeting the PYNQ-Z1 or
PYNQ-Z2 board, selecting Verilog as a target language.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2018.2 >
Vivado 2018.2

1-1-2. Click Create Project to start the wizard. You will see the Create A New Vivado Project wizard
page. Click Next.

1-1-3. Click the Browse button of the Project Location field of the New Project form, browse to {labs},
and click Select.

1-1-4. Enter lab1 in the Project Name field. Make sure that the Create Project Subdirectory box is
checked. Click Next.

Step 1:

Create a
Vivado
Project

Step 2:

Create the
System using
IP Integrator

Step 3:

Add Two
Instances of

GPIO

Step 4:

Validate the
Design

Step 5:

Generate the
Bitstream

Step 6:

Export the
Design to

SDK

Step 7:

Create an
Application in

SDK

Step 8:

Test in
Hardware

Lab Workbook Building a Complete Embedded System

 www.xilinx.com/university Zynq 1-3
 xup@xilinx.com
 © copyright 2018 Xilinx

Figure 2. Project Name Entry

1-1-5. Select the RTL Project option in the Project Type form, and click Next.

1-1-6. Select Verilog as the Target Language and Simulation Language in the Add Sources form, and
click Next.

1-1-7. Click Next to skip adding constraints.

1-1-8. In the Default Part form, click Boards filter.

1-1-9. Select www.digilentinc.com for the PYNQ-Z1 board, tul.com.tw for the PYNQ-Z2 board in the
Vendor field, select PYNQ-Z1 or pynq-z2, and click Next.

Building a Complete Embedded System Lab Workbook

Zynq 1-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2018 Xilinx

Figure 3. Board Selection (pynq-z2)

1-1-10. Click Finish to create an empty Vivado project.

Creating the Hardware System Using IP Integrator Step 2

2-1. Create a block design in the Vivado project using IP Integrator to generate
the ARM Cortex-A9 processor based hardware system.

2-1-1. In the Flow Navigator, click Create Block Design under IP Integrator.

2-1-2. Name the block system and click OK.

2-1-3. Click on the button.

2-1-4. Once the IP Catalog is open, type zy into the Search bar, and double click on the ZYNQ7
Processing System entry to add it to the design.

2-1-5. Click on Run Block Automation and click OK to automatically configure the board presets.

Lab Workbook Building a Complete Embedded System

 www.xilinx.com/university Zynq 1-5
 xup@xilinx.com
 © copyright 2018 Xilinx

 Figure 4. Zynq Block Automation View (pynq-z2)

2-1-6. Double click on the Zynq block to open the Customization window for the Zynq processing
system.

A block diagram of the Zynq PS should now be open, showing various configurable blocks of the
Processing System.

At this stage, designer can click on various configurable blocks (highlighted in green) and change
the system configuration.

Building a Complete Embedded System Lab Workbook

Zynq 1-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2018 Xilinx

Figure 5. Zynq Processing System Configuration View (pynq-z2)

2-2. Configure the I/O Peripherals block to only have UART 0 support.

2-2-1. Click on the MIO Configuration panel to open its configuration form.

2-2-2. Expand the I/O Peripherals (and GPIO).

2-2-3. Deselect all the peripherals except UART 0 (Deselect ENET 0, USB 0, SD 0, and GPIO).

Lab Workbook Building a Complete Embedded System

 www.xilinx.com/university Zynq 1-7
 xup@xilinx.com
 © copyright 2018 Xilinx

Figure 6. Selecting only UART 0 Peripheral of PS

2-2-4. Click OK.

The configuration form will close and the block diagram will be updated as shown below.

Figure 7. ZYNQ7 Processing System configured block

2-3. Add one instance of GPIO, name it buttons, and configure for the board.
Connect the block to the Zynq.

2-3-1. Click the button and search for AXI GPIO in the catalog.

2-3-2. Double-click the AXI GPIO to add an instance of the core to the design.

Building a Complete Embedded System Lab Workbook

Zynq 1-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2018 Xilinx

2-3-3. Click on the AXI GPIO block to select it, and in the Block properties tab, change the name to
buttons.

2-3-4. Double click on the AXI GPIO block to open the customization window. Under Board Interface, for
GPIO, click on Custom to view the dropdown menu options, and select btns 4Bits for the PYNQ-
Z2 or the PYNQ-Z1 board.

As the board was selected during the project creation, and a board support package is available
for these boards, Vivado has knowledge of available resources on the board.

2-3-5. Click the IP Configuration tab. Notice the GPIO Width is set to 4 (PYNQ-Z1 and PYNQ-Z2) and
is greyed out. If a board support package was not available, the width of the IP could be
configured here.

2-3-6. Click OK to finish configuring the GPIO and to close the Re-Customize IP window.

2-3-7. Click on Run Connection Automation, and select buttons (which will include GPIO and S_AXI)

Click on GPIO and S_AXI to check the default connections for these interfaces.

Figure 8. Connection Automation for the GPIO (PYNQ-Z2)

2-3-8. Click OK to automatically connect the S_AXI interface to the Zynq GP0 port (through the AXI
interconnect block), and the GPIO port to an external interface.

Notice that after block automation has been run, two additional blocks that are required to
connect the blocks, Processor System Reset, and AXI Interconnect have automatically been
added to the design.

2-4. Add another instance of GPIO, name the instance leds, configure it and
connect it to the Zynq.

2-4-1. Add another instance of the GPIO peripheral.

2-4-2. Change the name of the block to leds.

Lab Workbook Building a Complete Embedded System

 www.xilinx.com/university Zynq 1-9
 xup@xilinx.com
 © copyright 2018 Xilinx

2-4-3. Double click on the leds block, and select leds 4bits (PYNQ-Z1 and PYNQ-Z2) for the GPIO
interface and click OK.

2-4-4. Click on Run Connection Automation

2-4-5. Click leds, and check the connections for GPIO and S_AXI as before

2-4-6. Click OK to automatically connect the interfaces as before.

Notice that the AXI Interconnect block has the second master AXI (M01_AXI) port added and
connected to the S_AXI of the leds.

2-5. Add another instance of GPIO, name the instance switches, configure it
and connect it to the Zynq.

2-5-1. Add another instance of the GPIO peripheral.

2-5-2. Change the name of the block to switches.

2-5-3. Double click on the switches block, and select sws 2bits (PYNQ-Z1 and PYNQ-Z2) for the GPIO
interface and click OK.

2-5-4. Click on Run Connection Automation

2-5-5. Click switches, and check the connections for GPIO and S_AXI as before

2-5-6. Click OK to automatically connect the interfaces as before.

Notice that the AXI Interconnect block has the third master AXI (M02_AXI) port added and
connected to the S_AXI of the leds.

Building a Complete Embedded System Lab Workbook

Zynq 1-10 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2018 Xilinx

At this stage the design should look like as shown below.

 Figure 9. Completed design

2-6. Verify that the addresses are assigned to the two GPIO instances and
validate the design for no errors.

2-6-1. Select the Address Editor tab and see that the addresses are assigned to the three GPIO
instances. They should look like as follows.

Figure 7. Assigned addresses

The addresses should be in the 0x40000000 to 0xbfffffff range as the instances are connected to
M_AXI_GP0 port of the processing system instance.

2-6-2. Select the Diagram tab, and click on the (Validate Design) button to make sure that there are
no errors.

Ignore warnings.

2-6-3. Select File > Save Block Design to save the design.

Lab Workbook Building a Complete Embedded System

 www.xilinx.com/university Zynq 1-11
 xup@xilinx.com
 © copyright 2018 Xilinx

2-6-4. Since all IO pins are board-aware no additional user constraints are need.

Generate the Bitstream Step 3

3-1. Create the top-level HDL of the embedded system. Add the provided
constraints file and generate the bitstream.

3-1-1. In Vivado, select the Sources tab, expand the Design Sources, right-click the system.bd and
select Create HDL Wrapper…

Figure 11. Selecting the system design to create the wrapper file

3-1-2. Click OK when prompted to allow Vivado to automatically manage this file.

The wrapper file, system_wrapper.v, is generated and added to the hierarchy. The wrapper file will be
displayed in the Auxiliary pane.

Figure 82. Design Hierarchy View

3-1-3. Click on the Generate Bitstream in the Flow Navigator pane to synthesize and implement the
design, and generate the bitstream. Click Save and Yes if prompted. Click OK to launch the runs.

3-1-4. When the bitstream generation is complete, click Cancel.

Export the Design to the SDK Step 4

4-1. Exporting the design and launch SDK

4-1-1. Export the hardware configuration by clicking File > Export > Export Hardware… Tick the box to
include the bitstream and click OK.

Building a Complete Embedded System Lab Workbook

Zynq 1-12 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2018 Xilinx

Figure 9. Exporting the hardware

4-1-2. Launch SDK by clicking File > Launch SDK and click OK

(Launching SDK from Vivado will automatically load the SDK workspace associated with the
current project. If launching SDK standalone, the workspace will need to be selected.)

Generate an Application in SDK Step 5

5-1. Generate a board support package project with default settings and default
software project name.

SDK should open and automatically create a hardware platform project based on the
configuration exported from Vivado. A board support package and software application will be
created and associated with this hardware platform.

5-1-1. Select File > New > Board Support Package

Figure 104. Create BSP

Lab Workbook Building a Complete Embedded System

 www.xilinx.com/university Zynq 1-13
 xup@xilinx.com
 © copyright 2018 Xilinx

5-1-2. Click Finish with the default settings selected (using the Standalone operating system).

This will open the Software Platform Settings form showing the OS and libraries selections.

5-1-3. Click OK to accept the default settings as we want to create a standalone_bsp_0 software
platform project without any additional libraries.

5-1-4. The library generator will run in the background and will create the xparameters.h file in the
lab1.sdk\standalone_bsp_0\ps7_cortexa9_0\include directory.

5-2. Create an empty application project, named lab1, and import the provided
lab1.c file.

5-2-1. Select File > New > Application Project.

5-2-2. In the Project Name field, enter lab1 as the project name.

5-2-3. Select the Use existing option in the Board Support Package field and then click Next.

Figure 11. Create a Blank Application Project

Building a Complete Embedded System Lab Workbook

Zynq 1-14 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2018 Xilinx

5-2-4. Select the Empty Application template and click Finish.

The lab1 project will be created in the Project Explorer window of SDK.

5-2-5. Select lab1 > src directory in the project view, right-click, and select Import.

5-2-6. Expand the General category and double-click on File System.

5-2-7. Browse to the {sources}\lab1 folder.

5-2-8. Select the lab1.c source file and click Finish.

A snippet of the source code is shown in the following figure. Note the greyed out code will be
used in Lab5. The code reads from the switches, and writes to the LEDs. The BTN is read, and
written to the LED.

Lab Workbook Building a Complete Embedded System

 www.xilinx.com/university Zynq 1-15
 xup@xilinx.com
 © copyright 2018 Xilinx

Figure 16. Snippet of Source Code

Building a Complete Embedded System Lab Workbook

Zynq 1-16 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2018 Xilinx

Test in Hardware Step 8

6-1. Connect and power up the board. Establish serial communications using
the SDK’s Terminal tab. Verify the design functionality.

6-1-1. Connect and power up the board.

6-1-2. Select the tab. If it is not visible then select Window > Show view > Other >
Terminal > Terminal.

6-1-3. Click on and select appropriate COM port (depending on your computer), and configure the
terminal with the parameters as shown below.

Figure 17. SDK Terminal Settings

6-1-4. Select Xilinx > Program FPGA and then click the Program button.

6-1-5. Make sure that the SW0-1 are not set to “11”.

6-1-6. Select the lab1 project in the Project Explorer, right-click and select Run As > Launch on
Hardware(System Debugger) to download the application, execute ps7_init, and execute
lab1.elf.

Lab Workbook Building a Complete Embedded System

 www.xilinx.com/university Zynq 1-17
 xup@xilinx.com
 © copyright 2018 Xilinx

6-1-7. You should see the following output on the Terminal console.

Figure 18. SDK Terminal Output

6-1-8. Press the BTN0-BTN3 (PYNQ-Z1, PYNQ-Z2) and see the corresponding LED light up.

6-1-9. Set the two slide switches on PYNQ-Z1 or PYNQ-Z2 to the ON position to exit the program.

6-1-10. Close SDK and Vivado programs by selecting File > Exit in each program.

6-1-11. Turn OFF the power to the board.

Conclusion

In this lab, you created an ARM Cortex-A9 processor based embedded system using the Zynq device for
the PYNQ-Z1/PYNQ-Z2 board. You instantiated the Xilinx standard GPIO IP to provide input and output
functionality.

You created the project in Vivado, created the hardware system using IPI, implemented the design in
Vivado, exported the generated bitstream to the SDK, created a software application in the SDK, and
verified the functionality in hardware after programming the PL section and running the application from
the DDR memory.

