
Lab Workbook Lab 3: Application Development and Debug

 www.xilinx.com/support/university Zybo 3-1
 xup@xilinx.com
 © Copyright 2014 Xilinx

Lab 3: Application Development and Debug

Introduction

The PetaLinux tools allow you to easily write your application and build it into the embedded Linux image.
In most cases, you write your application on your general (host) computer system instead of the
embedded target system on which the embedded Linux runs. In these cases, you will need cross-
compilation. The PetaLinux tools allow you to cross-compile the embedded Linux application on the
desktop Linux.

The PetaLinux tools support debugging Zynq® All Programmable SoC user applications with the System
Debugger using TCF (target communication framework) agent. With TCF you are allowed to debug your
application running on the target remotely.

In previous labs, you learned how to build the standard embedded Linux target for an ARM® Cortex™-A9
processor system. While the embedded Linux distribution contains a large number of useful applications
and utilities, it is very likely that in order to meet your system requirements you will need to write your own
application programs.

The goal of this lab is to help you to create, develop, build, run, and debug your own application on the
ARM Cortex-A9 MPcore embedded Linux. The example application will be simple; however the concepts
and principles all apply directly to large, complex applications.

This lab builds directly on the skills learned in previous labs, specifically building and booting the Linux
system and logging in to the ARM Cortex-A9 MPcore Linux system. Refer to the earlier labs if you have
any doubts about these processes or ask your instructor.

Objectives

After completing this lab, you will be able to:
• Create a simple user application with the PetaLinux tools

• Build the new user application by cross-compiling into the embedded Linux

• Run the application in embedded Linux
• Debug the application with the System Debugger

Preparation

If this is the first lab that you are performing, then refer to the “Before You Start” section of Lab 1 for
necessary preparatory information on how to set up the environment.

If your workstation has been restarted or logout, run the following command to start DHCP server on the
host:

[host] $ sudo service isc-dhcp-server restart

Please refer to the “Initializing the Workshop Environment” section of Lab 1 for detailed information.

General Flow for this Lab

Step 1:
Creating a
New User
Application

Step 2:
Building the
Application

Step 3:
Booting the

image

Step 4:
Debugging

the
Application

Step 5:
Customizing

the
Application

Lab 3: Application Development and Debug Lab Workbook

Zybo 3-2 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

Creating a New User Application Step 1

To run a user application on an ARM Cortex-A9 MPcore system, you need to cross-
compile it and build it into the embedded Linux image on a host machine. PetaLinux
tools make these steps easy.

1-1. Change the path to the project directory.

1-1-1. Run the following commands to create and change to the project directory path:

[host] $ mkdir ~/emblnx/labs/lab3

[host] $ cd ~/emblnx/labs/lab3

1-2. Use the petalinux-create command to create a new embedded Linux

platform and choose the platform.

1-2-1. Run the following command to create a new petalinux project:

[host] $ petalinux-create -t project -s /opt/pkg/ZYBO_petalinux_v2014_2.bsp

The command will create the PetaLinux software project directory: ZYBO_petalinux_v2014_2

under ~/emblnx/labs/lab3.

1-2-2. Change the directory to the PetaLinux project:

~/emblnx/labs/lab3/ZYBO_petalinux_v2014_2

1-3. Create a new application.

The PetaLinux tools allows you to create user application templates for

either C or C++. These templates include application source code and

makefiles so that you can easily configure and compile applications for the

target and install them into the root file system.

1-3-1. Enter the following command to create a new user application inside a PetaLinux project:

[host] $ petalinux-create -t apps --name myapp --template c

Figure 1. Creating a new application
The new application you have created can be found in the <project-

root>/components/apps/myapp directory, where <project-root> is

~/emblnx/labs/lab3/ZYBO_petalinux_v2014_2.

To create a C++ application template, pass the --template c++ option.

1-3-2. Change to the newly created application directory:

Lab Workbook Lab 3: Application Development and Debug

 www.xilinx.com/support/university Zybo 3-3
 xup@xilinx.com
 © Copyright 2014 Xilinx

[host] $ cd <project-root>/components/apps/myapp

You will see the following PetaLinux template-generated files:

Figure 2. Files Generated After Creating a New Application

Template Description

Kconfig Configuration file template. This file controls how your application

is integrated into the PetaLinux menu configuration system and

allows you to add configuration options for your own application

to control how it is built or installed.

Makefile Compilation file template. This is a basic makefile containing

targets to build and install your application into the root file

system. This file needs to be modified when you add additional

source code files to your project.

README A file to introduce how to build the user application.

myapp.c for C or

myapp.cpp for C++

Simple application program in either C or C++, depending upon

your choice. These files will be edited or replaced with the real

source code for your application.

Building the Application into the Embedded Linux Step 2

Once you have created the new application, the next step is to compile and build it.

2-1. Select the new application to be included in the build process. The
application is not enabled by default.

2-1-1. Ensure that your current working directory (project directory) is
~/emblnx/labs/lab3/ZYBO_petalinux_v2014_2

2-1-2. Launch the rootfs configuration menu by entering the following command:

[host] $ petalinux-config -c rootfs

Note: Make sure that the terminal window is at least 80 columns wide.

The linux/rootfs configuration menu opens.

Lab 3: Application Development and Debug Lab Workbook

Zybo 3-4 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

Figure 3. The linux/rootfs Configuration menu

2-1-3. Press the Down Arrow key to scroll down the menu to Apps.

2-1-4. Press <Enter> to go into the Apps sub-menu.

The new application myapp is listed in the menu.

2-1-5. Move to myapp and press <Y> to select the application.

Figure 4. Selecting the new application myapp

Lab Workbook Lab 3: Application Development and Debug

 www.xilinx.com/support/university Zybo 3-5
 xup@xilinx.com
 © Copyright 2014 Xilinx

2-1-6. Press <Enter>to open the myapp options.

Figure 5. No additional options for myapp sub-menu

By default, there are no additional options for myapp. Advanced users can modify the Kconfig

file in the myapp directory to add custom options.

2-1-7. Select and press Exit several times to return to the main menu.

2-2. Enable the build debug-able applications.

2-2-1. Scroll down the linux/rootfs configuration menu to Debugging.

2-2-2. Select the Debugging sub-menu and ensure that build debugable applications is

selected. Click Y to select build debugable applications.

Figure 6. Selecting build debug-able applications

2-2-3. Select and press Exit to return to the main menu.

2-3. Enable the TCF agent for debugging support. The PetaLinux tools support
debugging Zynq All Programmable SoC user applications with a TCF agent.

Lab 3: Application Development and Debug Lab Workbook

Zybo 3-6 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

2-3-1. Select Filesystem Packages.

2-3-2. In the Filesystem Packages menu, select base.

2-3-3. In the base menu, scroll down and select tcf-agent.

2-3-4. Enable the tcf-agent by clicking Y.

Figure 7. Enabling the TCF Agent

2-3-5. Select and press Exit to return to the main menu.

2-3-6. Exit the linux/rootfs configuration menu.

2-3-7. Select <Yes> to save your new configuration.

It will take a few seconds for the configuration changes to be applied. Wait until you return to the
shell prompt on the command console.

2-4. Build the image.

2-4-1. Enter the following command to build the image:

[host] $ petalinux-build

Lab Workbook Lab 3: Application Development and Debug

 www.xilinx.com/support/university Zybo 3-7
 xup@xilinx.com
 © Copyright 2014 Xilinx

Booting the New Image with QEMU Step 3

With the QEMU simulator, you can develop and debug the software application without
using hardware at all.

3-1. Run the application in QEMU.

3-1-1. Enter the following command to boot the newly built PetaLinux image through QEMU:

petalinux-boot --qemu --kernel

3-1-2. After the system boots, log into the system by entering root as the both the login name and
password.

3-1-3. Examine the /bin directory in the QEMU console:

ls /bin | grep myapp

You should see that the myapp application is there.

3-1-4. Execute the myapp application in the QEMU console:

myapp 1
The following is the output of the command:
Hello, PetaLinux World!
cmdline args:
myapp
1

3-1-5. Press <Ctrl + a> then press <x> to exit QEMU.

Debugging the Application Using System Debugger in Board Step 4

4-1. Launch XSDK and create a workspace.

4-1-1. Open a new terminal.

4-1-2. Enter the following command to create the workspace directory under lab3:

[host] $ mkdir ~/emblnx/labs/lab3/workspace

4-1-3. Enter the following command to launch xsdk:

[host] $ xsdk

If the program does not start then source the settings by executing the following command:

[host] $ source /opt/pkg/Xilinx/Vivado/2014.2/settings32.sh

Lab 3: Application Development and Debug Lab Workbook

Zybo 3-8 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

4-1-4. Select ~/emblnx/labs/lab3/workspace as the workspace directory.

Figure 8. Setting pp the Workspace Environment path

4-1-5. Click OK.

4-1-6. Close the Welcome screen if it is open.

4-2. Create the hardware platform specification.

4-2-1. Select File > New > Project.

4-2-2. In the pop-up window select Xilinx > Hardware Platform Specification.

4-2-3. Click Next.

4-2-4. Enter zynq_hw_platform as the project name.

4-2-5. Under the Target Hardware Specification region, browse to the ~/emblnx/sources/lab3/
directory and select system_wrapper.hdf.

4-2-6. Click OK.

4-2-7. Click Finish.

4-3. Make sure that the BOOT.BIN file located in the SD card is copied from the
pre-built directory.

4-3-1. Make sure that the pre-built BOOT.BIN file is located in the SD card.

If you have done Lab 2 as your last lab, there is no need to make any changes to the SD card.

If not, copy the BOOT.BIN from the ~/emblnx/lab3/ZYBO_petalinux_v2014_2/pre-

built/linux/images directory to the SD card.

Lab Workbook Lab 3: Application Development and Debug

 www.xilinx.com/support/university Zybo 3-9
 xup@xilinx.com
 © Copyright 2014 Xilinx

4-3-2. Insert the SD card back to the target board.

4-4. Run the DHCP server on the host.

4-4-1. Run the DHCP server:

[host]$ sudo service isc-dhcp-server restart

4-5. Power up the board and set the serial port terminal.

4-5-1. Power ON the board.

4-5-2. Make sure that /dev/ttyUSB1 is set to read/write access:

[host]$ sudo chmod 666 /dev/ttyUSB1

4-5-3. In the dashboard, in the Search field, enter the serial port.

4-5-4. Select the Serial port terminal application.

You can reset (BTN7) the board to see the booting info once again.

4-6. Boot the new Linux image on the board.

4-6-1. Watch the booting process in the GtkTerm window.

4-6-2. Press any key to stop auto-boot when you see messages similar to the following in the GtkTerm
window:

Figure 9. Stopping the Autoboot

Lab 3: Application Development and Debug Lab Workbook

Zybo 3-10 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

4-6-3. If you did not see the “DHCP client bound to address” message during the uboot bootup, you will
need to run dhcp to obtain the IP address:

U-Boot-PetaLinux> dhcp

4-6-4. Set the TFTP server IP to the host IP by running the following command in the u-boot console:

U-Boot-PetaLinux> set serverip 192.168.1.1

4-6-5. Download and boot the new image using TFTP by executing this command in the u-boot console:

U-Boot-PetaLinux> run netboot

This command will download the image.ub file from /tftpboot on the host to the main
memory of the ARM Cortex-A9 MPcore system and boot the system with the image.

4-6-6. After the system boots, log into the system by entering root as both the login name and

password.

4-6-7. Confirm that TCF agent is running.

4-6-8. Enter the following command in the GtkTerm window to verify the IP address of the board:

ifconfig

4-6-9. Verify the eth0 IP address.

4-7. Create a new Debug configuration and configure the setup of the target.

4-7-1. From SDK, select Run > Debug Configurations…

Make sure that the SDK window is active as the selected foreground window.

4-7-2. Double-click Xilinx C/C++ application (System Debugger) to create a new configuration.

4-7-3. Select Linux Application Debug as the debug type.

Lab Workbook Lab 3: Application Development and Debug

 www.xilinx.com/support/university Zybo 3-11
 xup@xilinx.com
 © Copyright 2014 Xilinx

4-7-4. Set the host name to the IP address of the target board as determined in the previous step.

Figure 10. Configuring the Target Setup

4-8. Configure both the local and remote file paths.

4-8-1. Select the Application tab.

4-8-2. Set the local file path to be the compiled application in the project directory by clicking Browse
and locating the following folder:

<project-root>/build/linux/rootfs/apps/myapp/myapp

4-8-3. Set the remote file path to be the location on the target file system where your application can be
found:

/bin/myapp

Figure 11. Configuring the Application File paths

4-8-4. Click Apply.

Lab 3: Application Development and Debug Lab Workbook

Zybo 3-12 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

4-9. Debug the program.

4-9-1. Click Debug.

4-9-2. Click Yes to confirm the perspective switch.

The Debug perspective opens.

Figure 12. Debug perspective window

Program operation is suspended at the first executable statement in main{} (not running).

Note that local variables for the current function are shown in the Variables tab.

4-9-3. Select Window > Show View > Disassembly.

Lab Workbook Lab 3: Application Development and Debug

 www.xilinx.com/support/university Zybo 3-13
 xup@xilinx.com
 © Copyright 2014 Xilinx

4-9-4. Double-click line number 11 to set a breakpoint there (a check mark becomes visible).

Figure 13. Breakpoint set at line number 11

Note: If line numbers are not displayed, right-click the leftmost column of the editor and select
Show Line Numbers.

4-10. Resume the program.

4-10-1. Click the Play/Resume button (green triangle) to run the program.

The program runs until the breakpoint.

Lab 3: Application Development and Debug Lab Workbook

Zybo 3-14 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

Figure 14. Program Stops at breakpoint

You will see the message in the Console window.

You can explore other options and disconnect the program by clicking the Disconnect ()
button.

4-10-2. Close the XSDK tool by selecting File > Exit.

Customizing the Application Template Step 5

5-1. Edit the source file to print a configurable welcome string.

5-1-1. In the host terminal, change the directory to:

[host]$cd

~/emblnx/labs/lab3/ZYBO_petalinux_v2014_2/components/apps/myapp

5-1-2. Enter the following command to edit the myapp.c file:

[host]$gedit myapp.c

Lab Workbook Lab 3: Application Development and Debug

 www.xilinx.com/support/university Zybo 3-15
 xup@xilinx.com
 © Copyright 2014 Xilinx

5-1-3. Add the lines that are outlined in the figure below.

Figure 15. Customizing the myapp file

Note: Observe that the first printf statement needs to be modified to use the corresponding value
of welcome.

5-1-4. Save and close the file.

5-2. Edit the Kconfig file of the user application to add a configuration option.

5-2-1. Enter the following command to edit the Kconfig file:

[host]$gedit Kconfig

Lab 3: Application Development and Debug Lab Workbook

Zybo 3-16 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

5-2-2. Add the lines that are outlined in the figure below.

Figure 16. Adding a Configuration Option in the Kconfig file

5-2-3. Save and close the file.

5-3. Edit the user application makefile to pass the configurable option to the
user application executable.

5-3-1. Enter the following command to edit the makefile:

[host]$gedit Makefile

5-3-2. Add the lines that are outlined in the figure below.

Figure 17. Modifying the Makefile

5-3-3. Save and close the file.

5-4. Re-run the application configuration menu.

5-4-1. Change to the <project-root> directory. That is, change to
~/emblnx/labs/lab3/ZYBO_petalinux_v2014_2

Lab Workbook Lab 3: Application Development and Debug

 www.xilinx.com/support/university Zybo 3-17
 xup@xilinx.com
 © Copyright 2014 Xilinx

5-4-2. Enter the following command:

[host]$petalinux-config -c rootfs

5-4-3. Select Apps > myapp.

You should see the new Welcome String configuration in the myapp sub-menu.

Figure 18. Welcome string configuration

5-4-4. Select the Welcome String option.

5-4-5. Enter It's a user application test!.

Figure 19. Entering the Welcome string

5-4-6. Exit and save the configuration change.

5-5. Rebuild the image.

5-5-1. Change to the <project-root> directory.

That is, change to ~/emblnx/labs/lab3/ZYBO_petalinux_v2014_2

5-5-2. Rebuild application and target the system image:

[host]$ petalinux-build -c rootfs/myapp -x clean

Lab 3: Application Development and Debug Lab Workbook

Zybo 3-18 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

[host]$ petalinux-build -c rootfs/myapp
[host]$ petalinux-build -x package

5-6. Run the application in QEMU.

5-6-1. Enter the following command to boot the newly built PetaLinux image through QEMU:

[host]$ petalinux-boot --qemu --kernel

5-6-2. After the system boots, log into the system.

5-6-3. Execute the myapp application in the QEMU console:

myapp

The following is the output of the command:
Hello, It's a user application test!
cmdline args:
myapp

5-6-4. Press <Ctrl + a> then press <x> to exit QEMU.

Conclusion

In this lab, you have learned how to:

• Create an ARM Cortex-A9 MPcore embedded Linux application
• Build your application with cross-compilation

• Run the application in QEMU

• Debug your application by using System Debugger

Note that although System Debugger can be used to debug your application, printing or logging
information whenever necessary in your application is very important for tracking issues.

Completed Solution

If you want to run the solution then copy BOOT.bin from the labsolution\lab3\SDCard directory

onto a SD card. Place the SD card in the Zybo. Set Zybo in the SD Card boot mode. Connect the Zybo to
the host machine using Ethernet cable.

Run the following command to start DHCP server on the host:

[host] $ sudo service isc-dhcp-server restart

Copy the image.ub file from the labsolution\lab3\tftpboot directory into /tftpboot directory.

Power ON the board. Set the terminal session. Interrupt the boot process when autoboot message is
shown. Set the serverip address using the following command in the target board terminal window:

#set serverip 192.168.1.1

Run the netboot command:

#run netboot

Login into the system and test the lab.

