Lab Workbook Lab 3: Application Development and Debug

Lab 3: Application Development and Debug

Introduction

The PetaLinux tools allow you to easily write your application and build it into the embedded Linux image.
In most cases, you write your application on your general (host) computer system instead of the
embedded target system on which the embedded Linux runs. In these cases, you will need cross-
compilation. The Petalinux tools allow you to cross-compile the embedded Linux application on the
desktop Linux.

The PetaLinux tools support debugging Zyng® All Programmable SoC user applications with the System
Debugger using TCF (target communication framework) agent. With TCF you are allowed to debug your
application running on the target remotely.

In previous labs, you learned how to build the standard embedded Linux target for an ARM® Cortex™-A9
processor system. While the embedded Linux distribution contains a large number of useful applications
and utilities, it is very likely that in order to meet your system requirements you will need to write your own
application programs.

The goal of this lab is to help you to create, develop, build, run, and debug your own application on the
ARM Cortex-A9 MPcore embedded Linux. The example application will be simple; however the concepts
and principles all apply directly to large, complex applications.

This lab builds directly on the skills learned in previous labs, specifically building and booting the Linux
system and logging in to the ARM Cortex-A9 MPcore Linux system. Refer to the earlier labs if you have
any doubts about these processes or ask your instructor.

Objectives

After completing this lab, you will be able to:

e Create a simple user application with the PetaLinux tools

e Build the new user application by cross-compiling into the embedded Linux
e Run the application in embedded Linux

e Debug the application with the System Debugger

Preparation

If this is the first lab that you are performing, then refer to the “Before You Start” section of Lab 1 for
necessary preparatory information on how to set up the environment.

If your workstation has been restarted or logout, run the following command to start DHCP server on the
host:

[host] $ sudo service isc-dhcp-server restart

Please refer to the “Initializing the Workshop Environment” section of Lab 1 for detailed information.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:
Creating a Building the Booting the Debugging Customizing
New User |:> Application |:> image :> the |:> the
Application Application Application
i‘ XILINX www.xilinx.com/support/university Zybo 3-1

xup@xilinx.com
© Copyright 2014 Xilinx

Lab 3: Application Development and Debug Lab Workbook

Creating a New User Application Step 1

To run a user application on an ARM Cortex-A9 MPcore system, you need to cross-
compile it and build it into the embedded Linux image on a host machine. Petalinux
tools make these steps easy.

1-1. Change the path to the project directory.

1-1-1. Run the following commands to create and change to the project directory path:
[host] $ mkdir ~/emblnx/labs/lab3

[host] $ cd ~/emblnx/labs/lab3

1-2. Use the petalinux-create command to create a new embedded Linux
platform and choose the platform.

1-2-1. Run the following command to create a new petalinux project:
[host] $ petalinux—-create -t project -s /opt/pkg/ZYBO_petalinux_v2014_2.bsp
The command will create the Petalinux software project directory: ZYBO_petalinux_v2014_2
under ~/emblnx/labs/lab3.

1-2-2. Change the directory to the PetaLinux project:

~/emblnx/labs/1ab3/ZYBO_petalinux_v2014_2

1-3. Create a new application.

The PetaLinux tools allows you to create user application templates for
either C or C++. These templates include application source code and
makefiles so that you can easily configure and compile applications for the
target and install them into the root file system.

1-3-1. Enter the following command to create a new user application inside a PetaLinux project:
[host] $ petalinux-create -t apps —-name myapp —-template c

ab3/ZYBO_petalinux_v2014_ 25 petalinux-create -t

--name myapp --template c

: Create apps: myapp
: New apps successfully created in fhome/fpetalinux/emblnx/labs/1lab3/ZYBO_pet
alinux v2014 2

Figure 1. Creating a new application

The new application you have created can be found in the <project-
root>/components/apps/myapp directory, where <project-root> is
~/emblnx/labs/1ab3/7ZYBO_petalinux_v2014_2.

To create a C++ application template, pass the ——template c++ option.

1-3-2. Change to the newly created application directory:

Zybo 3-2 xilinx.com/support/university v
Y e ;(up@xilinx.com i‘ XILINX@

© Copyright 2014 Xilinx

Lab Workbook Lab 3: Application Development and Debug

[host] $ cd <project-root>/components/apps/myapp

You will see the following Petalinux template-generated files:

lab3 ZYBO_petalinux_v2014 2 components apps myapp

* Re This

Kconfig Makefile myapp.c README

Figure 2. Files Generated After Creating a New Application

Template Description

Kconfig Configuration file template. This file controls how your application
is integrated into the PetaLinux menu configuration system and
allows you to add configuration options for your own application
to control how it is built or installed.

Makefile Compilation file template. This is a basic makefile containing
targets to build and install your application into the root file
system. This file needs to be modified when you add additional
source code files to your project.

README A file to introduce how to build the user application.

myapp . ¢ for C or Simple application program in either C or C++, depending upon
your choice. These files will be edited or replaced with the real

myapp . cpp for C++ .
yapp.cpp source code for your application.

Building the Application into the Embedded Linux Step 2

Once you have created the new application, the next step is to compile and build it.
2-1. Select the new application to be included in the build process. The
application is not enabled by default.

2-1-1. Ensure that your current working directory (project directory) is
~/emblnx/labs/1ab3/ZYBO_petalinux_v2014_2

2-1-2. Launch the rootfs configuration menu by entering the following command:
[host] $ petalinux-config -c rootfs
Note: Make sure that the terminal window is at least 80 columns wide.

The linux/rootfs configuration menu opens.

v www.xilinx.com/support/university Zybo 3-3
(A XI I—I NX® xup@xilinx.com

© Copyright 2014 Xilinx

Lab 3: Application Development and Debug Lab Workbook

Linux/rootfs Configuration 1
Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <M> module < > module

| | Filesystem Packages --->

Libs --->

Apps --->

Modules ---=>

Petalinux RootFS Settings ---=
pDebugging --->

< Exit > < Help > < Save > < Load >

Figure 3. The linux/rootfs Configuration menu

2-1-3. Press the Down Arrow key (1) to scroll down the menu to Apps.

2-1-4. Press <Enter> to go into the Apps sub-menu.

The new application myapp is listed in the menu.

2-1-5. Move to myapp and press <Y> to select the application.

Apps 1
Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N=> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </=
for Search. Legend: [*] built-in [] excluded <M> module < > module

[*] fwupgrade ---=
[1 opio-demo ---=

ﬁ latencistat -

[*] peekpoke ---=
[*] uWeb ---=

< Exit = < Help = < Save > < Load =

Figure 4. Selecting the new application myapp

Zybo 3-4 www.xilinx.com/support/university v
xup@xilinx.com i‘ XI I—INX
© Copyright 2014 Xilinx

Lab Workbook

Lab 3: Application Development and Debug

2-1-6. Press <Enter>to open the myapp options.
Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </=>
for Search. Legend: [*] built-in [] excluded <M= module < > module
i 5T
*** No additional options for MYAPP ***
< Exit = < Help = < Save > < Load =
Figure 5. No additional options for myapp sub-menu
By default, there are no additional options for myapp. Advanced users can modify the Kconfig
file in the myapp directory to add custom options.
2-1-7. Select and press Exit several times to return to the main menu.
2-2. Enable the build debug-able applications.
2-2-1. Scroll down the linux/rootfs configuration menu to Debugging.
2-2-2. Select the Debugging sub-menu and ensure that build debugable applications is
selected. Click Y to select build debugable applications.
1
Arrow keys navigate the menu. <Enter> selects submenus --->. |
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, |
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> |
for Search. Legend: [*] built-in [] excluded <M> module < > module |
|
Filesystem Packagsg : it
ik aeen Arrow keys navigate the menu. <Enter> selects
AppS ---> Highlighted letters are hotkeys. Pressing <Y=
Mo <M> modularizes features. Press <Esc><Esc> to
Bat el nie ROGEES for Search. Legend: [*] built-in [] excluded
Debugging --- i
0 =l . | (@] build debugable applications
i |
|
< Bxf |
1
Figure 6. Selecting build debug-able applications
2-2-3. Select and press Exit to return to the main menu.
2-3. Enable the TCF agent for debugging support. The PetaLinux tools support

debugging Zynq All Programmable SoC user applications with a TCF agent.

& XILINX.

xup@xilinx.com
© Copyright 2014 Xilinx

www.xilinx.com/support/university

Zybo 3-5

Lab 3: Application Development and Debug Lab Workbook
2-3-1. Select Filesystem Packages.
2-3-2. In the Filesystem Packages menu, select base.
2-3-3. In the base menu, scroll down and select tcf-agent.
2-3-4. Enable the tcf-agent by clicking Y.
Linux/rootfs Configuration 1
Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, |
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> |
for Search. Legend: [*] built-in [] excluded <M> module < > module |
|
1 \
‘ Libs ---> ‘
APPs - Filesystem Packages
| Modules Arrow keys navigate the menu. <Enter> selects submenus --->. W
\ PetalLinu¥ Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
‘ pebugging <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <M> module < > module ‘
: T base
| [1 Advanced Pal arrqy keys navigate the menu. e Seliaes S e
| i* base-system yighlighted letters are hotkeys. Pressing <¥> includes, <N> excludes,
| - <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
I ?2z:£i27;:t for Search. Legend: [*] built-in [] excluded <M> module < > module
| Qonsnle/uti | Getbase s
L devel ---> | opkg-utils --->
I sysfsutils --->
sysvinit --->
| :,Esvinit—inittab T
| i : Arrow keys navigate the menu. <Enter> selec'
L update-rc.d --- Highlighted letters are hotkeys. Pressing <
<M> modularizes features. Press <Esc><Esc>
- Ifor Search. Legend: [*] built-in [] exclut
‘ [tcf-agent]
Figure 7. Enabling the TCF Agent
2-3-5. Select and press Exit to return to the main menu.
2-3-6. Exit the linux/rootfs configuration menu.
2-3-7. Select <Yes> to save your new configuration.
It will take a few seconds for the configuration changes to be applied. Wait until you return to the
shell prompt on the command console.
2-4. Build the image.
2-4-1. Enter the following command to build the image:
[host] $ petalinux-build
Zybo 3-6 www.xilinx.com/support/university

xup@xilinx.com
© Copyright 2014 Xilinx

& XILINX.

Lab Workbook

Lab 3: Application Development and Debug

Booting the New Image with QEMU

Step 3

With the QEMU simulator, you can develop and debug the software application without
using hardware at all.

3-1.

3-1-1.

3-1-2.

3-1-3.

3-1-4.

3-1-5.

Run the application in QEMU.

Enter the following command to boot the newly built PetaLinux image through QEMU:

petalinux-boot —--gemu —--kernel

After the system boots, log into the system by entering root as the both the login name and

password.

Examine the /bin directory in the QEMU console:
1ls /bin | grep myapp

You should see that the myapp application is there.

Execute the myapp application in the QEMU console:

myapp 1

The following is the output of the command:
Hello, PetalLinux World!

cmdline args:

myapp

1

Press <Ctrl + a> then press <x> to exit QEMU.

Debugging the Application Using System Debugger in Board

Step 4

4-1. Launch XSDK and create a workspace.
4-1-1. Open a new terminal.
4-1-2. Enter the following command to create the workspace directory under 1ab3:
[host] $ mkdir ~/emblnx/labs/lab3/workspace
4-1-3. Enter the following command to launch xsdk:
[host] $ xsdk
If the program does not start then source the settings by executing the following command:
[host] $ source /opt/pkg/Xilinx/Vivado/2014.2/settings32.sh
i‘ XILINX www.xilinx.com/support/university Zybo 3-7

xup@xilinx.com
© Copyright 2014 Xilinx

Lab 3: Application Development and Debug Lab Workbook

4-1-4. Select ~/emblnx/labs/lab3/workspace as the workspace directory.
Select a workspace
Xilinx SDK stores your projects in a folder called a workspace.
Choose a workspace folder to use For this session.
Workspace: |/home/petalinux/emblnx/labs/lab3/workspace A | Browse...
| Use this as the default and do not ask again
Cancel OK
Figure 8. Setting pp the Workspace Environment path
4-1-5. Click OK.
4-1-6. Close the Welcome screen if it is open.
4-2. Create the hardware platform specification.
4-2-1. Select File > New > Project.
4-2-2. In the pop-up window select Xilinx > Hardware Platform Specification.
4-2-3. Click Next.
4-2-4. Enter zynq_hw_platform as the project name.
4-2-5. Under the Target Hardware Specification region, browse to the ~/emblnx/sources/lab3/
directory and select system_wrapper.hdf.
4-2-6. Click OK.
4-2-7. Click Finish.
4-3. Make sure that the BOOT.BIN file located in the SD card is copied from the
pre-built directory.
4-3-1. Make sure that the pre-built BooT . BIN file is located in the SD card.
If you have done Lab 2 as your last lab, there is no need to make any changes to the SD card.
If not, copy the BOOT.BIN from the ~/emblnx/1lab3/ZYBO_petalinux_v2014_2/pre-
built/linux/images directory to the SD card.
Zybo 3-8 www.xilinx.com/support/university i‘ XILINX

xup@xilinx.com
© Copyright 2014 Xilinx

Lab Workbook

Lab 3: Application Development and Debug

4-3-2. Insert the SD card back to the target board.
4-4. Run the DHCP server on the host.
4-4-1. Run the DHCP server:
[host]$ sudo service isc-dhcp-server restart
4-5. Power up the board and set the serial port terminal.
4-5-1. Power ON the board.
4-5-2. Make sure that /dev/ttyUSB1 is set to read/write access:
[host]$ sudo chmod 666 /dev/ttyUSB1
4-5-3. In the dashboard, in the Search field, enter the serial port.
4-5-4. Select the Serial port terminal application.
You can reset (BTN7) the board to see the booting info once again.
4-6. Boot the new Linux image on the board.
4-6-1. Watch the booting process in the GtkTerm window.
4-6-2. Press any key to stop auto-boot when you see messages similar to the following in the GtkTerm
window:
% ZY¥YBO Unigue MAC Addr: 00 04 A3 D1 D5 B2 %
* The Unique MAC address printed above can be used by modifying *
* the u-boot environment stored in QSPI flash. This is done with *
* the saveenv command in u-boot. Refer to the Xilinx document 5
* titled "Petalinux Tools User Guide: Firmware Upgrade Guide" L
* (UG983) for more information. *
U-Boot 2014.01 (Jul 01 2014 - 19:56:17)
Memory: ECC disabled
DRAM: 512 MiB
MMC @ zyng_sdhci: O
SF: Detected S25FL128S_64K with page size 256 Bytes, erase size 64 KiB, total 16 MiB
*** Warning - bad CRC, using default environment
In: serial
Out: serial
Err: serial
Net: Gem.e000b00O
U-BOOT for ZYBO_petalinux_wv2014_2
Gem.e(000b000 Waiting for PHY auto negotiation to complete........ done
BOOTP broadcast 1
DHCP client bound to address
Hit any key to stop autcboot: 0
Figure 9. Stopping the Autoboot
(‘ XILINX www.xilinx.com/support/university Zybo 3-9
- e xup@xilinx.com

© Copyright 2014 Xilinx

Lab 3: Application Development and Debug Lab Workbook

4-6-3. If you did not see the “DHCP client bound to address” message during the uboot bootup, you will
need to run dhcp to obtain the IP address:
U-Boot-PetalLinux> dhcp

4-6-4. Setthe TFTP server IP to the host IP by running the following command in the u-boot console:
U-Boot-Petalinux> set serverip 192.168.1.1

4-6-5. Download and boot the new image using TFTP by executing this command in the u-boot console:
U-Boot-PetalLinux> run netboot
This command will download the image . ub file from /tftpboot on the host to the main
memory of the ARM Cortex-A9 MPcore system and boot the system with the image.

4-6-6. After the system boots, log into the system by entering root as both the login name and
password.

4-6-7. Confirm that TCF agent is running.

4-6-8. Enter the following command in the GtkTerm window to verify the IP address of the board:
ifconfig

4-6-9. Verify the eth0 IP address.

4-7. Create a new Debug configuration and configure the setup of the target.

4-7-1. From SDK, select Run > Debug Configurations...
Make sure that the SDK window is active as the selected foreground window.

4-7-2. Double-click Xilinx C/C++ application (System Debugger) to create a new configuration.

4-7-3. Select Linux Application Debug as the debug type.

Zybo 3-10 www.xilinx.com/support/university i' XILINX

xup@xilinx.com
© Copyright 2014 Xilinx

Lab Workbook Lab 3: Application Development and Debug

4-7-4. Set the host name to the IP address of the target board as determined in the previous step.

[el

4
4

0 Debug Configurations

Create, manage, and run configurations

@ Debug a program using System Debugger.
€] ¢/C++ Application
C/C++ Alttach to Application 1Bx B Name: | New_configuration
[€] ¢/C++ Postmortem Debugger | || @ Target Setup , [Application| ®- Arguments| B8 Environment | 5 Symbol Files| s Source| & Path M:
[€] ¢/C++ Remote Application [Elc/c++ Application Debug Type: | Linux Application Debug
¥ Launch Group I,['L—_ Ejz?t :;::;:::‘pl;':;:‘;g"“ Connection: | Local New
A Remote ARM Linux Application ic;c++ Remote Application PP 7CP.192.168.1.11

. o target connection (Default TCF agent port: 1534).
IS Target Communication Framework & Launch Group

Z. xilinx c/c++ application (GDB) A Remote ARM Linux Application
| C.fC ' Debuq [Target Communication Framewo
£ Xilinx ¢/C++ application (GDB)
v &, Xilinx C/C++ application (System
Filter matched 9 of 13 items #- New_configuration

@ | Close |
Figure 10. Configuring the Target Setup

4-8. Configure both the local and remote file paths.

4-8-1. Select the Application tab.

4-8-2. Set the local file path to be the compiled application in the project directory by clicking Browse
and locating the following folder:

<project-root>/build/linux/rootfs/apps/myapp/myapp

4-8-3. Set the remote file path to be the location on the target file system where your application can be
found:

/bin/myapp

MName: |New_configuration

® Target Setup [[C] Application . - Arguments | B§ Environment| 5 Symbol Files | & Source| & Path Map | E Common

Project

Project Name:

| Browse.. |

Application

Local File Path:

/home/petalinux/emblnx/labs/lab3/ZYBO_petalinux_v2014_2/build/linux/rootfs/apps/myapp/mya| | Search.. || Browse...
Remote File Path:

/bin/myapp

Working directory

& Use default

Close | Debug]
Figure 11. Configuring the Application File paths

4-8-4. Click Apply.

v www.xilinx.com/support/university Zybo 3-11
iA XI I—INX@ xup@xilinx.com

© Copyright 2014 Xilinx

Lab 3: Application Development and Debug Lab Workbook

4-9. Debug the program.
4-9-1. Click Debug.

4-9-2. Click Yes to confirm the perspective switch.

The Debug perspective opens.

Debug - /home/petalinux/emblnx/labs/lab3/Avnet-Digilent-ZedBoard-2014.2/build/linux/rootfs/apps/myapp/myapp.c - Xilinx SDK

B v HE v O Qv | R %l > ORI S N S = -l R R & |3Debug| &
%5 Debug X i» ¥ = O|/®-variables 3 " % Breakpoints| [XMD Console | @l XSDB Console =0
v §. New_configuration (TCF Agent) o g & N v

v i /bin/myapp Name Decimal Hex

v, P807.807 (Suspended: Trace/breakpoint trap) o arac o .
)=
= 0x00008518 [myapp] main(): myapp.c, line 9 g lo IGoToetos
= ;) . » argv
= oxb6dcc2bc [libe-2.18.50] __libc_start_main() g
= O|| 8 outline = = [m]

0 myapp.c 8

r” - a] S o A4
* Placeholder PetalLinux user application. B R W #®

* Replace this with your application code
/
#include <stdio.h>

int main(int argc, char *argv[])

printf("Hello, PetaLinux World!\n");

printf("cmdline args:\n");

while(argc--)
printf("%s\n",*argv++);

48 Target Con R = 0| E console & ¥ Tasks| & Terminal | [Problems| @ Executables = 0| [E) sbkLog 8 B R =0
TCF Debug Process Terminal - P807 et g v at com.xilinx.sdk.hw.HwProject.makeNewHardwareProject (HwPr [~

at com.xilinx.sdk.hw.core.HwPlatformProjectHandler.createH

4 Local [default] at com.xilinx.sdk.hw.core.HwPlatformProjectHandler.accesss$

at com.xilinx.sdk.hw.core.HwPlatformProjectHandlers$l. run(H
at org.eclipse.core.internal.resources.Workspace.run(Works
15:13:36 ERROR : Hardware project creation encountered errors

» & Auto Discovered

Figure 12. Debug perspective window
Program operation is suspended at the first executable statement in main{} (not running).

Note that local variables for the current function are shown in the Variables tab.

4-9-3. Select Window > Show View > Disassembly.

Zybo 3-12 www.xilinx.com/support/university v
xup@xilinx.com iA XI LINX®

© Copyright 2014 Xilinx

Lab Workbook Lab 3: Application Development and Debug

4-9-4. Double-click line number 11 to set a breakpoint there (a check mark becomes visible

Debug - /home/petalinux/emblnx/labs/lab3/Avnet-Digilent-ZedBoard-2014.2/build/linux/rootfs/apps/myapp/myapp.c - Xilinx SDK

v H O Qv |® = » PO S S B 2@ & &® 5 - & |35 Debug| B
%5 Debug % i» ¥ = O|/®=variables 3 " % Breakpoints| [XMD Console | @l XSDB Console =0
v §. New_configuration (TCF Agent) & G & N v

g

i /bin/myapp Name Decimal Hex
v, P807.807 (Suspended: Trace/breakpoint trap) o arac o .
= 0x00008518 [myapp] main(): myapp.c, line 9 = 9 I | TR
= argv |
= oxbédcc2bc [libc-2.18.50] __libc_start_main() g
& myapp.c 8 = O|| 8 outline X =0
e 51 RO o % T

* Placeholder PetalLinux user application.

* Replace this with your application code

#i;clude <stdio.h>

int main(int argc, char *argv[])
printf("Hello, PetaLinux World!\n");
printf(“cmdline args:\n");

while(argc--)
printf("%s\n",*argv++);

48 Target Con & = O || B console 2 », ¥ Tasks| & Terminal| 2! Problems | @ Executables = 0| [sbKLog X [P P =]
TCF Debug Process Terminal - P807 = g v at com.xilinx.sdk.hw.HwProject.makeNewHardwareProject (HwPr [~

at com.xilinx.sdk.hw.core.HwPlatformProjectHandler.createH

4 Local [default] at com.xilinx.sdk.hw.core.HwPlatformProjectHandler.access$

at com.xilinx.sdk.hw.core.HwPlatformProjectHandlers$l. run(H
at org.eclipse.core.internal.resources.Workspace.run(Works
15:13:36 ERROR : Hardware project creation encountered errors

» & Auto Discovered

Figure 13. Breakpoint set at line number 11

Note: If line numbers are not displayed, right-click the leftmost column of the editor and select
Show Line Numbers.

4-10. Resume the program.

4-10-1. Click the Play/Resume button (green triangle o) to run the program.

The program runs until the breakpoint.

(' XILINX www.xilinx.com/support/university Zybo 3-13
- e xup@xilinx.com
© Copyright 2014 Xilinx

Lab 3: Application Development and Debug Lab Workbook

Debug - fhome/petalinux/emblnx/labs/lab3/Avnet-Digilent-ZedBoard-2014.2/build/linux/rootfs/apps/myapp/myapp.c - Xilinx SDK

it B 08y R w W [T~ S - B | 2EE & & 4 B |35 Debug| B
4 v - s
%5 Debug 8 i# ¥ = O||es= variables % . % Breakpoin |3 xMD cons | @l XSDB Cons | #}f Registers | i Modules| = O
¥ £ New_configuration (TCF Agent) % @ & o
v 58 /bi
s2ibli/mszp Name Decimal Hex
¥ ¢ P807.807 (Breakpoint: Trace/breakpoint trap)
= 0x0000853c [myapp] main(): myapp.c, line 11 ¢ arge 1 CLLLLLT
' = > » argv 3198115364 be9fse24

= oxbédcczbe [libe-2.18.50] _libe_start_main()

= myapp.c £ = 0| & outline |+ Disassembly 52 = lm]
1 /% ; = = = =
2 * Placeholder Petalinux user application. Enterlocationhees g &l&B
31 A 00008524: str re, [rll, #-8] =
4 * Replace this with your application code 00608528: str rl, [r11, #-12]

5 | */f 10 printf("Hello, PetaLinux World!\n");

6 #include <stdio.h> 0080852C: ldr r3, [pc, #+100]

7 00008530: add r3, pc, r3

8 int main(int argc, char *argv[]) 00608534 mov re, r3

9 |{ 08008538: bl -396 ; addr=6x000083b4: printf@plt

18 printf("Hello, PetaLinux World!\n"); woll printf(“"cmdline args:\n"); [}
3all | printf(“cmdline args:\n"); % 0000853C: ldr r3, [pc, #+88]

12 while(argc--) 00008540 add r3, pc, r3

13 printf("%s\n", *argv++}); 00008544 mov re, r3

14 < 00008548: bl -412 ; addr=0x6eee83b4: printf@plt -
o Target con 5% = O| B console R . & Tasks| 4D Terminal | [Z Problems | @ Executables =) SDK Log | @ memory 2 =]

& TCF Debug Process Terminal - P807 - M ov & o [on & -

4 Local [default] Hello, PetaLinux World! Monitor &

» (= Auto Discovered =
D
1M Writable Smart Insert 11:1

Figure 14. Program Stops at breakpoint

You will see the message in the Console window.

&7

You can explore other options and disconnect the program by clicking the Disconnect (
button.

4-10-2. Close the XSDK tool by selecting File > Exit.

Customizing the Application Template Step 5

5-1. Edit the source file to print a configurable welcome string.

5-1-1. In the host terminal, change the directory to:

[host]$cd
~/emblnx/labs/1ab3/ZYBO_petalinux_v2014_2/components/apps/myapp

5-1-2. Enter the following command to edit the myapp. c file:

[host] $gedit myapp.c

Zybo 3-14 www.xilinx.com/support/university v
xup@xilinx.com iA XI LINX®

© Copyright 2014 Xilinx

Lab Workbook Lab 3: Application Development and Debug

5-1-3. Add the lines that are outlined in the figure below.

#include =<stdio.h=

int main(int argc, char *argv[])
{

char *welcome;
#ifdef WELCOME
welcome=WELCOME ;

Helse
welcome="Petalinux World!":;
#endif
printf("Hello, %s\n",welcome);
printt("cmdline args:\n");
while(argc--)
printf("%s\n",*argv++);
return 0;
}

Figure 15. Customizing the myapp file

Note: Observe that the first printf statement needs to be modified to use the corresponding value
of welcome

5-1-4. Save and close the file.

5-2. Edit the Kconfig file of the user application to add a configuration option.

5-2-1. Enter the following command to edit the Kconfig file:

[host] $gedit Kconfig

v www.xilinx.com/support/university Zybo 3-15
(A XI LINX@ xup@xilinx.com

© Copyright 2014 Xilinx

Lab 3: Application Development and Debug Lab Workbook

5-2-2. Add the lines that are outlined in the figure below.

if ROOTFS_COMPONENT_APPS_MAME_MYAPP
comment "No additional options for MYAPP"

config APPS_MYAPP_WELCOME
string "Welcome String”
help

Welcome string for myapp

config APPS_MYAPP_OPTION®
= bool "option®"

= help

= Help text

endif

Figure 16. Adding a Configuration Option in the Kconfig file

5-2-3. Save and close the file.

5-3. Edit the user application makefile to pass the configurable option to the
user application executable.

5-3-1. Enter the following command to edit the makefile:

[host] $gedit Makefile

5-3-2. Add the lines that are outlined in the figure below.

include apps.common.mk

include $(ROOTFS_CONFIG)

ifneq (S(CONFIG_APPS_MYAPP_WELCOME),)
CFLAGS += -DWELCOME=\"$(CONFIG_APPS_MYAPP_WELCOME)\"
endif

APP = myapp

Figure 17. Modifying the Makefile

5-3-3. Save and close the file.

5-4. Re-run the application configuration menu.

5-4-1. Change to the <project-root> directory. That is, change to
~/emblnx/labs/1ab3/ZYBO_petalinux_v2014_2

Zybo 3-16 www.xilinx.com/support/university v
xup@xilinx.com iA XI LINX®

© Copyright 2014 Xilinx

Lab Workbook Lab 3: Application Development and Debug

5-4-2. Enter the following command:

[host]$petalinux—-config —-c rootfs

5-4-3. Select Apps > myapp.

You should see the new Welcome String configuration in the myapp sub-menu.

Arrow keys navigate the menu. <Enter> selects submenus --->.

for Search. Legend: [*] built-in [] excluded <M> module < >

Highlighted letters are hotkeys. Pressing <Y> includes, <N=> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </=>

*** No additional options for MYAPP **+*
() Welcome String (NEW)

< Exit > < Help > < Save > < Load >

Figure 18. Welcome string configuration
5-4-4. Select the Welcome String option.

5-4-5. Enter It's a user application test!.

field to the buttons below it.

It's a user application test!'

Please enter a string value. Use the <TAB> key to move from the input

ok > < Help =

Figure 19. Entering the Welcome string

5-4-6. Exit and save the configuration change.

5-5. Rebuild the image.

5-5-1. Change to the <project-root> directory.

That is, change to ~/emblnx/labs/1ab3/Z2YBO_petalinux_v2014_2

5-5-2. Rebuild application and target the system image:

[host]$ petalinux-build -c rootfs/myapp —-x clean

v www.xilinx.com/support/university
(A XI I—INX® xup@xilinx.com

© Copyright 2014 Xilinx

Zybo 3-17

Lab 3: Application Development and Debug Lab Workbook

[host]$ petalinux-build -c rootfs/myapp
[host]$ petalinux-build -x package

5-6. Run the application in QEMU.

5-6-1. Enter the following command to boot the newly built PetaLinux image through QEMU:

[host]$ petalinux-boot —--gemu —--kernel
5-6-2. After the system boots, log into the system.

5-6-3. Execute the myapp application in the QEMU console:

myapp

The following is the output of the command:
Hello, It's a user application test!
cmdline args:

myapp
5-6-4. Press <Ctrl + a> then press <x> to exit QEMU.

Conclusion

In this lab, you have learned how to:

e Create an ARM Cortex-A9 MPcore embedded Linux application
e Build your application with cross-compilation

¢ Run the application in QEMU

e Debug your application by using System Debugger

Note that although System Debugger can be used to debug your application, printing or logging
information whenever necessary in your application is very important for tracking issues.

Completed Solution

If you want to run the solution then copy BOOT .bin from the 1absolution\lab3\SDCard directory
onto a SD card. Place the SD card in the Zybo. Set Zybo in the SD Card boot mode. Connect the Zybo to
the host machine using Ethernet cable.

Run the following command to start DHCP server on the host:

[host] $ sudo service isc-dhcp-server restart

Copy the image . ub file from the 1absolution\lab3\tftpboot directory into /t ftpboot directory.

Power ON the board. Set the terminal session. Interrupt the boot process when autoboot message is
shown. Set the serverip address using the following command in the target board terminal window:

#set serverip 192.168.1.1

Run the netboot command:

#run netboot

Login into the system and test the lab.

Zybo 3-18 xilinx.com/support/university v
Y e)i(up@xilinx.com i‘ XILINX@

© Copyright 2014 Xilinx

