
Lab Workbook Lab 8: Custom Driver Development – AXI Device

 www.xilinx.com/support/university Zybo 8-1
 xup@xilinx.com
 © Copyright 2014 Xilinx

Lab 8: Custom Driver Development – AXI Device

Introduction

The UIO framework allows you to quickly develop device drivers that can be controlled from user space.
As the FIR AXI IP core you created in Lab 7 is a very simple device, writing a kernel-space driver for it is
unnecessary. A UIO driver is a better choice with the functionality and complexity moved to user space.

In this lab, you will use UIO to access the IP core.

Objectives

After completing this lab, you will be able to:

• Write a UIO program to access the FIR AXI IP core

• Create the image after enabling the UIO drivers
• Generate the SD card image

• Verify the functionality after booting the board from the SD card

Preparation

If this is the first lab that you are performing, then refer to the “Before You Start” section of Lab 1 for
necessary preparatory information on how to set up the environment.

If your workstation has been restarted or logout, run the following command to start DHCP server on the
host:

[host] $ sudo service isc-dhcp-server restart

Please refer to the “Initializing the Workshop Environment” section of Lab 1 for detailed information.

General Flow for this Lab

Reusing the Previous Vivado Design Suite Project Step 1

You will use the design created in the Lab 7. You will save this previous project so that it
can be used as the current lab project.

1-1. Create a lab8 directory under the labs folder. Create a directory called

hardware under the created lab8 directory.

1-1-1. Create and change to the project directory by executing the following commands:

[host] $ [host] $ mkdir ~/emblnx/labs/lab8
[host] $ mkdir ~/emblnx/labs/lab8/hardware

[host] $ cd ~/emblnx/labs/lab8/hardware

Step 1:
Reusing
Previous
Project

Step 2:
Creating the

New
PetaLinux
Platform

Step 3:
Configuring
and Building
Linux Image

Step 4:
Booting from
SD Card and

Testing

Lab 8: Custom Driver Development – AXI Device Lab Workbook

Zybo 8-2 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

1-2. Launch the Vivado Design Suite. Open the Vivado Design Suite project of
the previous lab (lab7) and save the project as lab8.

1-2-1. Launch the Vivado Design Suite, if it is not already open, by executing the following command:

[host] $ vivado

If the program does not start then run the following command on the host machine to source the
setup script:

[host] $ source /opt/pkg/Xilinx/Vivado/2014.2/settings32.sh

1-2-2. Click the Open Project link in the Getting Started page.

1-2-3. Click Browse Projects, browse to the ~/emblnx/labs/lab7/hardware directory, and select the
lab7.xpr entry.

1-2-4. Select File > Save Project As.

1-2-5. Click the Browse button next to the Project location field and browse to the
/home/petalinux/emblnx/labs/lab8/hardware directory.

1-2-6. Enter lab8 in the Project name field.

1-2-7. Verify that the Create project subdirectory option is not selected.

1-2-8. Click OK.

1-3. Set the project settings to point to the IPs in the sources/lab8 directory.
Reset the output products.

1-3-1. Click Project Settings under Project Manager in the Flow Navigator pane.

1-3-2. Select IP in the left pane of the Project Settings window.

1-3-3. Select the entry in the IP Repositories section and click the button on the right to remove it.

1-3-4. Click Add IP Repository and browse to the /home/petalinux/emblnx/sources/lab8 directory.

1-3-5. Click Select.

The Fir and zybo_audio_ctrl entries will show up in the IP in Selected Repository section.

1-3-6. Click OK.

1-3-7. In the Sources > Hierarchy window, expand the system_wrapper hierarchy, right-click on
system_i and select Reset Output Products…

1-3-8. Click Reset.

Lab Workbook Lab 8: Custom Driver Development – AXI Device

 www.xilinx.com/support/university Zybo 8-3
 xup@xilinx.com
 © Copyright 2014 Xilinx

1-4. Generate the bitstream. Export the hardware making sure that the Include
Bitstream option is selected.

1-4-1. Click Generate Bitstream in the Flow Navigator to run the synthesis, implementation, and
bitstream generation processes.

1-4-2. Click Yes to re-run the synthesis process.

1-4-3. When the bitstream generation process completes, click OK to open the implemented design.

1-4-4. Select File > Export > Export Hardware.

1-4-5. In the Export Hardware form make sure that the Include Bitstream and Export to local project
directory are selected.

1-4-6. Click OK.

1-4-7. Close Vivado by selecting File > Exit.

Creating a New Platform with PetaLinux Configuration Options Step 2

The next step is to create a new PetaLinux SDK software platform, ready for building a
Linux system customized to your new hardware platform.

2-1. Verify the PetaLinux working environment or set it by running the
PetaLinux setup script.

2-1-1. Run the following command on the host machine to see if the PetaLinux tools are installed and
sourced properly

[host] $ echo $PETALINUX

It should display

/opt/pkg/petalinux-v2014.2-final

2-1-2. If it doesn’t then run the following command on the host machine to source the set up script:

[host] $ source /opt/pkg/petalinux-v2014.2-final/settings.sh

2-2. Use the petalinux-create command to create a new embedded Linux

platform in the project directory.

2-2-1. Change to the project directory. Enter the following command:

cd ~/emblnx/labs/lab8

2-2-2. Run the following command to create a new Petalinux project:

Lab 8: Custom Driver Development – AXI Device Lab Workbook

Zybo 8-4 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

[host] $ petalinux-create -t project --name software

Configuring and Building the Linux System Step 3

The next step is to customize the software platform template to precisely match your
unique hardware system. This is done by copying and merging the platform
configuration files generated during the hardware build phase into the newly created
software platform.

3-1. Configure the PetaLinux software project based on the hardware and set
the SD Card as the boot device.

3-1-1. Change the directory to the <XSDK workspace directory> directory:

[host] $ cd ~/emblnx/labs/lab8/hardware/lab8.sdk

3-1-2. Use the petalinux-config command to import the hardware configuration:

[host] $ petalinux-config --get-hw-description -p

~/emblnx/labs/lab8/software

It launches the top system configuration menu when petalinux-config --get-hw-description runs for
the first time for the PetaLinux project or the tool detects there is a change in the system primary
hardware candidates.

3-1-3. Select the Subsystem AUTO Hardware Settings (using down arrow key and pressing Enter) to
go into the sub-menu.

3-1-4. Move down to Advanced bootable images storage Settings option and press Y or space bar to
enable the setting.

This sub-menu allows users to specify where bootable images are. The settings of this menu are
used by PetaLinux auto configured u-boot.

3-1-5. Press Enter to go into the Advanced bootable images storage Settings sub-menu.

3-1-6. Go into the boot image storage > image storage media (primary flash) and select the primary
sd option.

3-1-7. Press Enter.

3-1-8. Select <Exit> to go one level up.

3-1-9. Similarly, select the kernel image settings and select the image storage media as primary sd.

3-1-10. Press Enter, exit the configuration and save the configuration.

The PetaLinux tools generate the hardware configuration files, if required, and copies the
configuration files to the correct location in your project directory.

Lab Workbook Lab 8: Custom Driver Development – AXI Device

 www.xilinx.com/support/university Zybo 8-5
 xup@xilinx.com
 © Copyright 2014 Xilinx

3-2. Launch the Linux kernel configuration menu and configure it to meet your
requirements.

3-2-1. Change into the root directory of your PetaLinux project:

[host] $ cd ~/emblnx/labs/lab8/software

3-2-2. Run the following command in the terminal:

[host] $ petalinux-config -c kernel

3-2-3. Select Device Drivers from the Linux Kernel Configuration menu.

Figure 1. Accessing Device Drivers options

3-2-4. In the Device Drivers menu, scroll down to the Userspace I/O drivers select it as “<*>”.

Figure 2. Selecting the UIO Driver as Built-in

Because the kernel is configured to support loadable modules by default, for those loadable
device drivers, you can select it as built-it or module. “<*>” means built-in and “<M>” means

Lab 8: Custom Driver Development – AXI Device Lab Workbook

Zybo 8-6 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

module. If a driver is selected as a module, it will not be loaded when booting Linux; you can load
it after Linux boots by using the modprobe command (see below).

The UIO kernel driver will be selected as built-in.

3-2-5. Hit the Enter key to go to its sub-menu and observe that the Userspace I/O platform driver with
generic IRQ handling is selected.

3-2-6. Exit to one-level back and scroll up until you see the I2C support.

3-2-7. Go to the Device Drivers > I2C Support menu and verify that it is selected since the CODEC will
be configured from the PS (Processing System) using I2C (I2C channel 1).

3-2-8. Exit the configuration, saving the settings.

3-3. Mark the zybo_audio_ctrl_0, axi_gpio_0, fir_left and fir_right instances as
the UIO devices in the DTS file.

3-3-1. Browse to the directory
~/emblnx/labs/lab8/software/subsystems/linux/configs/device-tree.

Notice that there are four files- pl.dtsi, ps.dtsi, system-conf.dtsi, and system-top.dts; you can
make changes to system-top.dts file to customize your settings as it does not get updated by the
PetaLinux tools.

3-3-2. Copy the provided system-top.dts file from the ~/emblnx/sources/lab8 and place it in the

~/emblnx/labs/lab8/software/subsystems/linux/configs/device-tree directory
replacing the existing file. This is required as Zybo uses 50 MHz clock as the input to PS
compared to standard 33.333333 MHz clock used by the PetaLinux tool.

3-3-3. Copy the provided platform-top.h file from the ~/emblnx/sources/lab8 and place it in the

~/emblnx/labs/lab8/software/subsystems/linux/configs/u-boot directory
replacing the existing file. This is required as Zybo uses 50 MHz clock as the input to PS
compared to standard 33.333333 MHz clock used by the PetaLinux tool.

3-3-4. Review the pl.dtsi file in editor like gedit.

You will see that it lists two instances of FIR filters, one instance of the GPIO, and one instance of
the audio controller. These are the only IPs in the design which are in PL section. Observe that
the instances are assigned generic drivers.

Lab Workbook Lab 8: Custom Driver Development – AXI Device

 www.xilinx.com/support/university Zybo 8-7
 xup@xilinx.com
 © Copyright 2014 Xilinx

Figure 3. The pl.dtsi file content

3-3-5. Open the system-top.dts file in an editor and modify it so it has UIO drivers for the
zybo_audio_ctrl_0, axi_gpio_0, fir_left and fir_right instances.

Lab 8: Custom Driver Development – AXI Device Lab Workbook

Zybo 8-8 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

Figure 4. Assigning UIO drivers

3-3-6. Save the file and close the editor.

3-4. Create a new user application, called fir-uio-test, to test the FIR IP. Copy
the fir-uio-test.c and Makefile source files from the

sources/lab8/fir-uio-test directory.

3-4-1. Make sure that you are at the software directory of the current project, i.e.
~/emblnx/labs/lab8/software

3-4-2. Enter the following command to create a new user application inside a PetaLinux project:

Lab Workbook Lab 8: Custom Driver Development – AXI Device

 www.xilinx.com/support/university Zybo 8-9
 xup@xilinx.com
 © Copyright 2014 Xilinx

[host] $ petalinux-create -t apps --name fir-uio-test

The new application will be created in the
~/emblnx/labs/lab8/software/components/apps/fir-uio-test directory.

3-4-3. Change to the newly created application directory:

[host] $ cd ~/emblnx/labs/lab8/software/components/apps/fir-uio-test

3-4-4. Replace the existing fir-uio-test.c file with the provided source files from the

sources/lab8 directory:

[host] $ cp ~/emblnx/sources/lab8/fir-uio-test/* ./

This will copy the fir-uio-test.c and Makefile. The Makefile adds the compiler flag, CFLAG, with
optimization turned OFF. This is required so the compiler does not optimize the code that refers
to the same memory mapped I/O register for successive write.

3-4-5. Review the fir-uio-test.c source code to see how to access a device using UIO.

As can be seen, you need to open the /dev/uioX file and then use mmap() to map the device

to the application's address space. Then you can access the device by using the pointer returned
from the mmap() call.

3-5. Create another user application, called codec-test, to test the zybo-audio-
ctrl IP. Copy the codec-test.c, audio.h and Makefile source files

from the sources/lab8/codec-test directory.

3-5-1. Make sure that you are at the software directory of the current project, i.e.
~/emblnx/labs/lab8/software

3-5-2. Enter the following command to create a new user application inside a PetaLinux project:

[host] $ petalinux-create -t apps --name codec-test

The new application will be created in the
~/emblnx/labs/lab8/software/components/apps/codec-test directory.

3-5-3. Change to the newly created application directory:

[host] $ cd ~/emblnx/labs/lab8/software/components/apps/codec-test

3-5-4. Replace the existing codec-test.c file with the provided source, add audio.h and Makefile

files from the sources/lab8/codec-test directory:

[host] $ cp ~/emblnx/sources/lab8/codec-test/* ./

The Makefile adds the compiler flag CFLAG with optimization turned OFF.

3-5-5. Review the codec-test.c source code to see how to access a device using UIO and I2C
device using the I2C driver.

As can be seen, you need to open the /dev/uioX file and then use mmap() to map the device
to the application's address space. Then you can access the device by using the pointer returned

Lab 8: Custom Driver Development – AXI Device Lab Workbook

Zybo 8-10 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

from the mmap() call. Similarly, you need to open the /dev/i2c-dev device and then use
mmap().

3-6. Create a new user application, called zybo-audio-test, to test the CODEC
and FIR cores. Copy the zybo-audio-test.c, audio.h and MakeFile

source files from the sources/lab8/zybo-audio-test directory.

3-6-1. Make sure that you are at the software directory of the current project, i.e.
~/emblnx/labs/lab8/software

3-6-2. Enter the following command to create a new user application inside a PetaLinux project:

[host] $ petalinux-create -t apps --name zybo-audio-test

The new application will be created in the
~/emblnx/labs/lab8/software/components/apps/zybo-audio-test directory.

3-6-3. Change to the newly created application directory:

[host] $ cd ~/emblnx/labs/lab8/software/components/apps/zybo-audio-test

3-6-4. Replace the existing zybo-audio-test.c file with the provided source from the

sources/lab8/zybo-audio-test directory and also add the provided audio.h and

Makefile files:

[host] $ cp ~/emblnx/sources/lab8/zybo-audio-test/* ./

The Makefile adds the compiler flag CFLAG with optimization turned OFF.

3-6-5. Review the zybo-audio-test.c source code to see how to access various devices using UIO.

3-7. Launch the rootfs configuration menu and include the fir-uio-test,

code-test, and zybo-audio-test applications

3-7-1. Run the following command in the terminal:

[host] $ petalinux-config -c rootfs

3-7-2. Select Apps.

3-7-3. Enable fir-uio-test, codec-test, and zybo-audio-test by clicking <Y>.

3-7-4. Select Exit two times and save the configuration.

3-8. Build the system image.

3-8-1. Run the petalinux-build command again to build the system image:

[host] $ petalinux-build

Lab Workbook Lab 8: Custom Driver Development – AXI Device

 www.xilinx.com/support/university Zybo 8-11
 xup@xilinx.com
 © Copyright 2014 Xilinx

3-9. Launch the rootfs configuration menu and include the fir-uio-test,

codec-test, and zybo_audio_ctrl applications

3-9-1. Run the following command in the terminal:

[host] $ petalinux-config -c rootfs

3-9-2. Select Apps.

3-9-3. Enable fir-uio-test, codec-test, and zybo_audio_ctrl by clicking <Y>.

3-9-4. Select Exit two times and save the configuration.

3-10. Build the system image.

3-10-1. Run the petalinux-build command again to build the system image:

[host] $ petalinux-build

Booting the PetaLinux Image with SD Card and Testing FIR UIO Step 4

Having configured to use the SD card as the primary boot device, you will create a boot
image file that contains the Zynq All Programmable SoC FSBL, the BIT file for the
programmable logic (PL) configuration, u-boot, and the Linux image for the SD card
boot.

4-1. Create a BOOT.BIN file to boot from the SD card.

4-1-1. Change the directory to where linux image is generated by executing the following command.

[host] cd ~/emblnx/labs/lab8/software/images/linux

4-1-2. Enter the following command in the console:

petalinux-package --boot --fsbl zynq_fsbl.elf --fpga

~/emblnx/labs/lab8/hardware/lab8.runs/impl_1/system_wrapper.bit --uboot

The BOOT.BIN file will be generated and the system_wrapper.bit file will be copied in the linux

image directory; i.e., ~/emblnx/labs/lab8/software/images/linux.

4-1-3. Copy the BOOT.BIN and image.ub files from the
~/emblnx/labs/lab8/software/images/linux directory to the SD card.

4-2. Set the jumper settings for booting from SD card. Connect the board and
power it ON and set the serial port terminal.

Lab 8: Custom Driver Development – AXI Device Lab Workbook

Zybo 8-12 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

4-2-1. Make sure that the JP7 is set to select USB power.

4-2-2. Make sure that the jumper settings for booting from SD card are set as shown below.

Figure 5. Jumper setting for SD card boot

4-2-3. Power ON the board.

4-2-4. Make sure that /dev/ttyUSB1 is set to read/write access:

 [host] $ sudo chmod 666 /dev/ttyUSB1

4-2-5. In the dashboard, in the Search field, enter the serial port.

4-2-6. Select the Serial port terminal application and select the appropriate port and 115200 baud.

4-3. Log in and test the UIO.

4-3-1. In the terminal, press the <Enter> key.

4-3-2. Log into the system using root as the user name and password.

4-3-3. Run mdev -s to make sure /dev/uioX correctly represents the UIO device:

mdev –s

The mdev commands automatically create device files in /dev for the devices found in /sys/*.

4-3-4. Go to the /sys/class/uio directory in the GtkTerm console (Serial port):

cd /sys/class/uio

4-3-5. Check which UIO represents the FIR devices by checking the uioX/name file:

cat uio<X>/name

In this example, uio1/name is the FIR_LEFT, which matches the first part of the FIR device
label before “@” in the DTS and means that uio1 links to the FIR left channel device.
The other UIO: uio2 links to the FIR right channel device, UIO:UIO0 links to GPIO and UIO:uio3
links to the audio controller.

To verify which UIOx maps to which address, you can use the following command:

cat uio<X>/maps/map0/addr

Lab Workbook Lab 8: Custom Driver Development – AXI Device

 www.xilinx.com/support/university Zybo 8-13
 xup@xilinx.com
 © Copyright 2014 Xilinx

4-3-6. Try fir-uio-test to send the impulse input to the filter and get the response back displaying

the coefficients:

fir-uio-test

You will see the following output:

Figure 6. The fir-uio-test output

4-3-7. Try codec-test to play or mute the music. Connect an audio patch cable between the PC
speaker out jack and LINE IN of the ZYBO board. Play music using an audio player.

codec-test

If you set the SW0 to the UP position then you will hear the music. If SW0 is down then it will
mute.

4-3-8. Try zybo-audio-test to play or filter the music.

zybo-audio-test

If you set the SW0 to the UP position then you will hear the music but about 4 KHz signal filtered.
If SW0 is down then it will pass through.

4-3-9. Power OFF the board.

Conclusion

In this lab, you have learned how to:

• Write a user application to access a device on UIO
• Edit the DTS file to link devices to the generic-uio driver

• Generate a boot image and boot the board using SD card

Completed Solution

Copy BOOT.bin and image.ub from the labsolution\lab8\SDCard directory onto a SD card. Place

the SD card in Zybo. Set Zybo in the SD Card boot mode. Connect the Zybo’s Line In jack to the speaker
out of the host machine, and connect a headphone to the HPH Out jack of the board.

Power ON the board. Set the terminal session. Login into the system and test the lab.

