
Lab Workbook Lab 7: Integrating Custom Cores – AXI FIR and CODEC

 www.xilinx.com/support/university ZedBoard 7-1
 xup@xilinx.com
 © Copyright 2014 Xilinx

Lab 7: Integrating Custom Cores – AXI FIR and
CODEC

Introduction

Xilinx provides commonly used bus interfaces for customized IP cores to talk to the system. Xilinx also
provides a customized IP Packager tool to automatically interface to your IP core when you use it to
create customized hardware.

In the previous lab, you learned how to create a hardware platform using the Vivado® IP integrator. The
purpose of this lab is to show you how to add a custom IP core through the IP integrator after the project
settings are made to point to the provided custom core

In this lab you are provided two AXI-Lite custom IPs – audio controller (zed_audio_ctrl) and FIR filter. The
audio controller will communicate with the on-board CODEC chip whereas the FIR filter will process the
input sample through a 58-tap FIR filter and output the sample. Since we are inputting 0x8000 (most
negative) to the provided filter will show the first few coefficients as:
0x17A,0x49, 0xFFE5, 0xFF56, 0xFED6, 0xFEA0, 0xFED2, 0XFF58 …

So when an impulse input is given to the filter, you expect the output samples to produce impulse
response corresponding to the coefficients.

Objectives

After completing this lab, you will be able to:

• Add custom IP to an existing project by using Vivado IP Integrator
• Use XMD to debug the hardware

Preparation

If this is the first lab that you are performing, then refer to the “Before You Start” section of Lab 1 for
necessary preparatory information on how to set up the environment.

Please refer to the “Initializing the Workshop Environment” section of Lab 1 for detailed information.

General Flow for this Lab

Reusing the Previous Vivado Design Suite Project Step 1

You will use the design you created in Lab 6. You will save this previous project so that
it can be used as the current lab project.

1-1. Create a lab7 directory under the labs directory.

Step 1:
Reusing the

Previous
Project

Step 2:
Adding

Custom AXI
Cores

Step 3:
Adding XDC

and
Generating

the Bitstream

Step 4:
Debugging
with XMD

Lab 7: Integrating Custom Cores – AXI FIR and CODEC Lab Workbook

ZedBoard 7-2 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

1-1-1. Create a lab7 project directory in ~/emblnx/labs by executing the following commands on the

host machine:
[host] $ mkdir ~/emblnx/labs/lab7
[host] $ mkdir ~/emblnx/labs/lab7/hardware
[host] $ cd ~/emblnx/labs/lab7/hardware

1-2. Launch the Vivado Design Suite and open the Vivado Design Suite project
of the previous lab (lab6) and save the project as lab7.

1-2-1. Launch the Vivado Design Suite, if it is not already open, by executing the following command:

[host] $ vivado

Note: If the command fails to start the Vivado Design Suite, then execute the following command
first and then try the above command again:
host] $ source /opt/pkg/Xilinx/Vivado/2014.2/settings32.sh

1-2-2. Click the Open Project link in the Getting Started page.

1-2-3. Click Browse Projects, browse to the lab6 directory in the ~/emblnx/labs/lab6/hardware directory,
and select the lab6.xpr entry.

1-2-4. Select File > Save Project As.

1-2-5. Click the Browse button next to the Project location field and browse to the
/home/petalinux/emblnx/labs/lab7/hardware directory.

1-2-6. Enter lab7 in the Project name field.

1-2-7. Verify that the Create project subdirectory option is not selected.

Figure 1. Saving the previously created project as a new project

1-2-8. Click OK.

Adding the Custom AXI Cores and Completing the Design Step 2

Before custom cores can be added, the project settings need to be updated with the IP
repositories.

2-1. Set the project settings to add the provided AXI cores repository.

2-1-1. Click Project Settings under Project Manager in the Flow Navigator pane.

Lab Workbook Lab 7: Integrating Custom Cores – AXI FIR and CODEC

 www.xilinx.com/support/university ZedBoard 7-3
 xup@xilinx.com
 © Copyright 2014 Xilinx

2-1-2. Select IP in the left pane of the Project Settings window.

2-1-3. Click Add Repository and browse to the /home/petalinux/emblnx/sources/lab7 directory.

2-1-4. Click Select.

Notice that the folder will be scanned and the Fir and zed_audio_ctrl IP entries will be displayed
in the IP in Selected Repository section.

Figure 2. Adding IP Repository to the project

2-1-5. Click OK to close the Project Settings window.

2-2. Open the block design and delete all three GPIO IP instances (for switches,
buttons, and LEDs) and their associated external ports.

2-2-1. Click Open Block Design under the IP Integrator sub-group in the Flow Navigator pane to open
the block design.

2-2-2. Select each of the GPIO instances (switches, buttons, and LEDs) one at a time and press the
<Delete> key to remove them from the design.

2-2-3. Right-click each of the external ports (of the deleted switches, buttons, and LEDs) and select
Delete to delete them.

2-3. Add one instance of the zed_audio_ctrl and two instances of the FIR filter.

2-3-1. Add an instance of the zed_audio_ctrl IP.

2-3-2. Click on Run Connection Automation, select /zed_audio_ctrl_0/S_AXI and click OK.

Lab 7: Integrating Custom Cores – AXI FIR and CODEC Lab Workbook

ZedBoard 7-4 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

Notice that the S_AXI interface of the added IP is connected to the M00_AXI interface of the
processing_system7_0_axi_periph instance. Also, the S_AXI_ACLK and S_AXI_ARESETN
ports are connected appropriately.

2-3-3. Add an instance of the FIR IP to the design.

2-3-4. Select the added instance in the diagram, and change its instance name to fir_left by typing it in
the Name field of the Block Properties form in the left.

2-3-5. Similarly, add another instance of the FIR IP, and name it fir_right.

2-3-6. Click on Run Connection Automation, and select /fir_left/S_AXI_FIR_IO and click OK.

Notice that the S_AXI interface of the fir_left instance is connected to the M01_AXI interface of
the processing_system7_0_axi_periph instance.

2-3-7. Similarly, click on Run Connection Automation again, and select /fir_right/S_AXI_FIR_IO and
click OK.

2-4. Add one instance of AXI GPIO with 2-bits output only on Channel 1 and 1-
bit input only on Channel 2.

2-4-1. Add an instance of the AXI GPIO IP.

2-4-2. Click on Run Connection Automation, select the /axi_gpio_0/S_AXI and click OK.

2-4-3. Double-click on the axi_gpio_0 instance and configure it to have two bits output only on Channel
1 and one bit input only on Channel 2.

2-5. Configure the processing system block to enable I2C 1. Enable
FCLK_CLK1, the PL fabric clock and set its frequency to 8.000 MHz. Enable
the PS-PL Interrupt ports > IRQ_F2P ports.

2-5-1. Double-click on the processing_system7_0 instance to open the re-customization form.

2-5-2. Select the MIO Configuration tab on the left to open the configuration form and expand I/O
Peripheral in the right pane.

2-5-3. Click on the check box of the I2C 1.

2-5-4. Select the Clock Configuration in the left pane, expand the PL Fabric Clocks entry in the right,
and click the check-box of FCLK_CLK1.

2-5-5. Change the Requested Frequency value of FCLK_CLK1 to 8.000 MHz.

Lab Workbook Lab 7: Integrating Custom Cores – AXI FIR and CODEC

 www.xilinx.com/support/university ZedBoard 7-5
 xup@xilinx.com
 © Copyright 2014 Xilinx

Figure 3. Enabling and setting the frequency of FCLK_CLK1

2-5-6. Select the Interrupt in the left pane, click on the Fabric Interrupts check box in the right.

2-5-7. Expand the Fabric Interrupts > PL-PS Interrupt Ports > IRQ_F2P entry in the right, and click the
check-box of IRQ_F2P[15:0].

2-5-8. Click OK.

2-6. Make IIC_1, GPIO, FCLK_CLK1, and zed_audio_ctrl ports external.

2-6-1. Right-click on the GPIO interface of the axi_gpio_0 instance and select Make External to create
an external port. This will create the external port named GPIO.

2-6-2. Similarly, make the GPIO2 interface of the axi_gpio_0 instance External.

2-6-3. Similarly, make the IIC_1 interface and FCLK_CLK1 port of the processing_system7_0 instance
external.

2-6-4. Similarly, selecting one port (input and output) at a time of the zed_audio_ctrl_0 instance and
make them external.

2-7. Add an instance of concat IP with two single-bit input ports. Connect input
ports to the interrupt ports of the two FIR instances and the output port to
the IRQ_F2P port of the processing_system7_0 instance.

2-7-1. Add an instance of the concat IP.

2-7-2. Connect the interrupt port of each of the FIR instances to the two input ports of the xlconcat_0
instance.

2-7-3. Connect the output port of the xlconcat_0 instance to the IRQ_F2P port of the
processing_system7_0 instance.

At this stage the design should look like shown below (you may have to click the regenerate []
button).At this stage the design should look like shown below (you may have to click the

regenerate [] button).

Lab 7: Integrating Custom Cores – AXI FIR and CODEC Lab Workbook

ZedBoard 7-6 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

Figure 4. The block design

2-8. Verify the addresses and validate the design.

2-8-1. Select the Address Editor tab, and expand processing_system7_0 > Data if necessary.

Figure 5. Generated address map

2-8-2. Select File > Save Block Design.

2-8-3. Select the Diagram tab.

2-8-4. Select Tools > Validate Design to run design validation and verify that there are no errors.

2-9. Generate the output products which will also update the system_wrapper
file.

2-9-1. In the Sources > Hierarchy window, expand the system_wrapper hierarchy, right-click on
system_i and select Reset Output Products…

Lab Workbook Lab 7: Integrating Custom Cores – AXI FIR and CODEC

 www.xilinx.com/support/university ZedBoard 7-7
 xup@xilinx.com
 © Copyright 2014 Xilinx

2-9-2. Click Reset.

2-9-3. In the Flow Navigator, click on the Generate Block Design to generate the output products.

2-9-4. Click Generate.

This will also update the system_wrapper file so the added ports will be brought out to the top
level.

Adding the XDC File and Generating the Bitstream Step 3

Once the system wrapper file is generated, the user ports are exposed at the top level.
The user ports must be constrained with the constraints file before the bitstream is
generated. Here you will add the provided XDC (Xilinx Design Constraints) file with the
I/O ports assignments and then generate the bitstream.

3-1. Add the provided XDC file and generate the bitstream.

3-1-1. Click Add Sources under Project Manager in the Flow Navigator pane and select Add or Create
Constraints.

3-1-2. Click Next.

3-1-3. Click Add Files button.

3-1-4. Browse to the /home/petalinux/emblnx/sources/lab7 directory and select lab7.xdc.

3-1-5. Click OK.

3-1-6. Click Finish to add the file.

3-1-7. Click Generate Bitstream in the Flow Navigator to run the synthesis, implementation, and
bitstream generation processes.

3-1-8. Click Yes to re-run the synthesis process.

3-1-9. When the bitstream generation process completes, click OK to open the implemented design.

3-2. Export the hardware, launch SDK, and exit SDK.

Launching SDK will create the system_wrapper_hw_platform_0 directory
under which ps7_init.tcl file will be generated. This file will be used in the
next step to debug using xmd.

3-2-1. Select File > Export > Export Hardware.

3-2-2. Make sure that Include Bitstream check box is checked. Click OK.

Lab 7: Integrating Custom Cores – AXI FIR and CODEC Lab Workbook

ZedBoard 7-8 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

3-2-3. Select File > Launch SDK.

This will invoke SDK and create the system_wrapper_hw_platform_0 directory under which
ps7_init.tcl file will be generated. This file will be used in the next step.

3-2-4. Exit SDK by selecting File > Exit.

Debugging the AXI FIR IP Core with XMD Step 4

Low-level hardware debugging is useful when testing a new hardware IP core;
otherwise, if you combine the hardware test, driver test, and application test and there is
a problem, determining whether it is hardware or software problem could be difficult.

The Xilinx Microprocessor Debugger (XMD) allows you to directly write to AXI registers.
In this step, you will export the design, invoke SDK, program the FPGA from SDK, and
use XMD to debug the FIR AXI IP core.

4-1. Make sure that the board is configured in the JTAG boot mode. Connect
the board and power it ON.

4-1-1. Connect the board's JTAG port to the host machine using the provided micro-USB cable.

4-1-2. Set the board jumpers to JTAG boot.

4-1-3. Power ON the board.

4-2. Program the FPGA using Open Hardware Manager.

4-2-1. Select the Open Hardware Manager in the Flow Navigator under the Program and Debug group
and click OK.

The Hardware Manager window will open indicating “unconnected” status.

4-2-2. Click on the Open a new hardware target link.

You can also click on the Open recent target link if the board was already targeted before.

Figure 7. Opening new hardware target

4-2-3. Click Next to see the Vivado CSE Server Name form.

4-2-4. Click Next with the localhost port selected.

The JTAG cable which uses the Xilinx_tcf should be detected and identified as a hardware target.
It will also show the hardware devices detected in the chain.

4-2-5. Click Next and Finish.

Lab Workbook Lab 7: Integrating Custom Cores – AXI FIR and CODEC

 www.xilinx.com/support/university ZedBoard 7-9
 xup@xilinx.com
 © Copyright 2014 Xilinx

4-2-6. The Hardware Session status changes from Unconnected to the server name and the device is
highlighted. Also notice that the Status indicates that it is not programmed.

4-2-7. Select xc7z020_1 and verify that the system_wrapper.bit is selected as the programming file in
the General tab of the Hardware Device Properties.

4-2-8. Click Program device > xc7z020_1 and then click Program to download the bitstream
(system_wrapper.bit) and program the PL section.

The file will be downloaded and the FPGA will be programmed. The DONE LED will be lit
indicating that the PL section is programmed.

4-3. Launch XMD from the terminal window and connect XMD to the target. Stop
the running application on the ARM® Cortex™-A9 processor.

4-3-1. Open a new Terminal window and change to the
~/emblnx/labs/lab7/hardware/lab7.sdk/system_wrapper_hw_platform_0 directory.

4-3-2. Start the XMD session by typing the following command.

[host] xmd

The XMD% prompt will be displayed.

4-3-3. In the XMD connect to the hardware target by typing the following command:

XMD% connect arm hw

4-3-4. Stop the processor by issuing the following command:

XMD% stop

4-4. Test your AXI FIR core by writing the following commands into and reading
from the core.

You will write to 0x43c1001c, and 0x43c10000, and read from 0x43c10014

repeatedly to get the impulse response from the left channel FIR filter. You

could do the same for the right channel by using 0x43c200xx.

4-4-1. Execute the following set of commands to source the ps7_init.tcl file, and execute the ps7_init,
and ps7_post_config commands to enable level shifters so you can talk to the AXI peripherals.

XMD% source ps7_init.tcl

XMD% ps7_init

XMD% ps7_post_config

4-4-2. Execute the following set of commands to issue 0x8000 as the first input of an impulse input to
the filter, send the convert pulse (toggling to 1 and then back to 0) and read the output sample.

XMD% mwr 0x43c1001c 0x8000

XMD% mwr 0x43c10000 0x1

XMD% mwr 0x43c10000 0x0

XMD% mrd 0x43c10014

Lab 7: Integrating Custom Cores – AXI FIR and CODEC Lab Workbook

ZedBoard 7-10 www.xilinx.com/support/university
 xup@xilinx.com
 © Copyright 2014 Xilinx

It should display 0x17A as the first coefficient output

4-4-3. Execute the following set of commands to issue 0x00 as the next input of an impulse input to the
filter, send the convert pulse (toggling to 1 and then back to 0) and read the output sample.

XMD% mwr 0x43c1001c 0x0

XMD% mwr 0x43c10000 0x1

XMD% mwr 0x43c10000 0x0

XMD% mrd 0x43c10014

It should display 0x49 as the next coefficient output

You can execute these set of commands (of step 4-4-3) as many times you want to read the next
set of coefficients.

4-4-4. When satisfied, disconnect the xmd connection and exit out of the program by executing the
following commands:

XMD% disconnect 64
XMD% exit

4-4-5. Select File > Close Hardware Manager in Vivado to close the hardware manager.

4-4-6. Click OK.

4-4-7. Power OFF the board.

4-4-8. Select File > Exit in the Vivado Design Suite and click OK to close the program.

Conclusion

In this lab, you have learned how to:

• Set the project settings so that a custom IP repository can be accessed

• Add the custom IP to the design
• Utilize the common AXI bus interface

• Use XMD to access software-accessible AXI registers and debug the design

Completed Solution

Set the board to boot using JTAG. Power ON the board. Open Vivado > Open Hardware Manager,
establish the connection with the board, assign the system_wrapper.bit file located under the
labsolution\lab7\lab7.sdk directory, and program the device. Follow 4-3 and 4-4 steps listed

above to test the hardware.

