Lab Workbook Creating a Processor System Lab

Creating a Processor System Lab

Introduction

This lab introduces a design flow to generate a IP-XACT adapter from a design using Vivado HLS and
using the generated IP-XACT adapter in a processor system using IP Integrator in Vivado.

Objectives

After completing this lab, you will be able to:

e Understand the steps and directives involved in creating an IP-XACT adapter from a synthesized
design in Vivado HLS

e Create a processor system using IP Integrator in Vivado

e Integrate the generated IP-XACT adapter into the created processor system

The Design

The design consists of a FIR filter to filter a 4 KHz tone added to CD quality (48 KHz) music. The
characteristic of the filter is as follows:

FS=48000 Hz

FPASS1=2000 Hz

FSTOP1=3800 Hz

FSTOP2=4200 Hz

FPASS2=6000 Hz

APASS1=APASS2=1 dB

ASTOP=60 dB

This lab requires you to develop a peripheral core of the designed filter that can be instantiated in a
processor system. The processor system will acquire a stereo music stream using an on-board CODEC
chip and 12C controller, process it through the designed filter (bandstop filter), and output back to the
headphone.

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 9 primary steps: You will create a new project in Vivado HLS, run simulation,
synthesize the design, run RTL/C co-simulation, create a project in Project Navigator, run simulation
using ISIM, setup for IP-XACT adapter in Vivado HLS, implement the design in Vivado HLS, create a
processor system in Vivado using IP Integrator, create a software application in SDK, and verify the
design in hardware.

v www.xilinx.com/university Zynq 4-1
i‘ XI LINXJ Xup@xilinx.com

© copyright 2017 Xilinx

Creating a Processor System Lab Lab Workbook

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:
Create a I:; Run C IZD Synthesize :> Run RTL/C :> Setup IP-
New Simulation the Desi Co- XACT

i gn : .
Project Simulation Adapter
Step 6: Step 7: Step 8: Stgp 9: Appendix:
Generate Create a Export to Verify the Create an
the IP-XACT |:> Vivg_do |:> SDK & :> Design in |:> Inlthl Design
Adapter Project Create an Hardware using Tcl
Annlication Script
Create a New Project Step 1

1-1. Create a new project in Vivado HLS targeting XC7Z2020CLG484-1
(ZedBoard) or XC7Z010CLG400-1 (Zybo).

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2017.4 >
Vivado HLS > Vivado HLS 2017.4

A Getting Started GUI will appear.

1-1-2. Inthe Getting Started section, click on Create New Project. The New Vivado HLS Project wizard
opens.

1-1-3. Click Browse... button of the Location field, browse to c:\xup\hls\labs\lab4, and then click OK.
1-1-4. For Project Name, type fir.prj
1-1-5. Click Next.

1-1-6. Inthe Add/Remove Files for the source files, type fir as the function name (the provided source
file contains the function, to be synthesized, called fir).

1-1-7. Click the Add Files... button, select fir.c and fir_coef.dat files from the c:\xup\hls\labs\lab4 folder,
and then click Open.

1-1-8. Click Next.

1-1-9. Inthe Add/Remove Files for the testbench, click the Add Files... button, select fir_test.c file from
the c:\xup\his\labs\lab4 folder and click Open.

1-1-10. Click Next.

1-1-11. In the Solution Configuration page, leave Solution Name field as solution1 and set the clock
period as 10 (for ZedBoard) or 8 (for Zybo). Leave Uncertainty field blank as it will take 1.25 as
the default value for ZedBoard and 1 for Zybo.

Zynq 4-2 www.xilinx.com/university v
Xup@xilinx.com (A XI I_INX_,,

© copyright 2017 Xilinx

Lab Workbook Creating a Processor System Lab

1-1-12. Click on Part’s Browse button, and select the following filters, using the Parts Specify option, to
select xc7z020clg484-1 (ZedBoard) or xc7z010clg400-1 (Zybo), and click OK:
Family: Zynqg
Sub-Family: Zynq
Package: clg484 (ZedBoard) or clg400 (Zybo)
Speed Grade: -1

1-1-13. Click Finish.

You will see the created project in the Explorer view. Expand various sub-folders to see the
entries under each sub-folder.

1-1-14. Double-click on the fir.c under the source folder to open its content in the information pane.

1#include "fir.h"

2
dvoid fir (
4 data_t *vy,

5 data_t x

6) q

7 const coef_t c[N+1]={
8 #include "fir_coef.dat"
° ks

(%)

12 static data_t shift_reg[N];

13 acc_t acc;

14 int i;

15

16 acc=(acc_t)shift_reg[N-1]*(acc_t)c[N];
17 loop: for (i=N-1;i!=0;i--) {

18 acc+=(acc_t)shift_reg[i-1]*(acc_t)c[i];
19 shift_reg[i]=shift_reg[i-1];

20}

21 acc+=(acc_t)x*(acc_t)c[0];

22 shift_reg[@]=x;

23 Fy = acc »> 15;

241

Figure 1. The design under consideration

The FIR filter expects x as a sample input and pointer to the computed sample out. Both of them
are defined of data type data_t. The coefficients are loaded in array c of type coef_t from the file
called fir_coef.dat located in the current directory. The sequential algorithm is applied and
accumulated value (sample out) is computed in variable acc of type acc_t.

1-1-15. Double-click on the fir.h in the outline tab to open its content in the information pane.

v www.xilinx.com/university Zynq 4-3
(‘ XI LINX” Xup@xilinx.com

© copyright 2017 Xilinx

Creating a Processor System Lab Lab Workbook

1-1-16.

1#ifndef FIR_H_

2#define _FIR_H_

3 #include "ap_cint.h"

A #define N 58

5 #define SAMPLES N+1@ // just few more samples ther
6 typedef short coef t;

7 typedef short data_t;

Stypedef int38 acc_t;

S #endif

L)

o
=
=
m
=
(=]
t
+
21}
=]
[T

Figure 2. The header file

The header file includes ap_cint.h so user defined data width (of arbitrary precision) can be used.
It also defines number of taps (N), number of samples to be generated (in the testbench), and
data types coef _t, data_t, and acc_t. The coef t and data_t are short (16 bits). Since the
algorithm iterates (multiply and accumulate) over 59 taps, there is a possibility of bit growth of 6
bits and hence acc_t is defined as int38. Since the acc_t is bigger than sample and coefficient
width, they have to cast before being used (like in lines 16, 18, and 21 of fir.c).

Double-click on the fir_test.c under the testbench folder to open its content in the information
pane.

Notice that the testbench opens fir_impulse.dat in write mode, and sends an impulse (first sample
being 0x8000.

Run C Simulation Step 2

2-1.

2-1-1.

Run C simulation to observe the expected output.

Select Project > Run C Simulation or click on = from the tools bar buttons, and Click OK in
the C Simulation Dialog window.

The testbench will be compiled using apcc compiler and csim.exe file will be generated. The
csim.exe will then be executed and the output will be displayed in the console view.

Zyng 4-4 www.xilinx.com/university (' XI LINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook

Creating a Processor System Lab

Starting C simulation ...
C:/Xilinx/Vivado/2017.4/bin/vivado_hls.bat C:/xup/hls/labs/labd/fir.prj/solutionl/csim.tcl

INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

[HLS
[HLS
[HLS
[HLS
[HLS
[SYN
[HLS
[SIM
[SIM

200-18] Running 'C:/Xilinx/Vivado/2017.4/bin/unwrapped/wingd.o/vivado hls.exe"’
200-18] For user 'parimalp' on host 'xsjparimalp31' (Windows NT_amdé64 version 6
200-18] In directory 'C:/xup/hls/labs/lab4d’

200-18] Opening project 'C:/xup/hls/labs/labd/fir.prj’.

2008-10] Opening solution 'C:/xup/hls/labs/lab4/fir.prj/solutionl’.

201-201] Setting up clock ‘default’ with a period of 18ns.

200-18] Setting target device to 'xc7z0208clgdB84-1"

211_2] PR SRS AR R g CSIM Star't R R ROR RO R R RO R

211-4] CSIM will launch GCC as the compiler.

Compiling(apcc) ../../../../fir_test.c in debug mode
INFO: [HLS 200-18] Running 'c:/Xilinx/Vivado/2017.4/bin/unwrapped/winéd.o/apcc.exe’

INFQ: [HLS 208-10] In directory 'C:/xup/hls/labs/lab4/fir.prj/solutionl/csim/build’
INFO: [APCC 2082-3] Tmp directory is apcc_db
INFO: [APCC 2082-1] APCC is done.

Generating csim.exe

i el e = B~ B (= WV B =N WU I T
[I o T o T o T T B e B e B e

W h =2
om e ®

73
-27
-17@
-298
-352
-302
-168
-14
80
64
-53
-186
-216

-32768 378

Figure 3. Initial part of the generated output in the Console view

You should see the filter coefficients being computed.

Synthesize the Design Step 3

3-1.

3-1-1.

3-1-2.

3-1-3.

3-1-4.

Synthesize the design with the defaults. View the synthesis results and
answer the question listed in the detailed section of this step.

Select Solution > Run C Synthesis > Active Solution to start the synthesis process.

When synthesis is completed, several report files will become accessible and the Synthesis
Results will be displayed in the information pane.

The Synthesis Report shows the performance and resource estimates as well as estimated
latency in the design.

Using scroll bar on the right, scroll down into the report and answer the following question.

& XILINX.

www.xilinx.com/university Zynq 4-5
Xup@xilinx.com
© copyright 2017 Xilinx

Creating a Processor System Lab Lab Workbook

Question 1

3-1-5.

3-2.

3-2-1.

3-2-2.

3-2-3.

3-2-4.

3-2-5.

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of BRAMSs used:

Number of FFs used:

Number of LUTs used:

The report also shows the top-level interface signals generated by the tools.

Interface

- Summary
RTLPorts Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs fir return value
ap_rst in 1 ap_ctrl_hs fir return value
ap_start in 1 ap_ctrl_hs fir return value
ap_done out 1 ap_ctrl_hs fir return value
ap_idle out 1 ap_ctrl_hs fir return value
ap_ready out 1 ap_ctrl_hs fir return value
¥ out 16 ap_vld ¥ pointer
y_ap_vid out 1 ap_vid y pointer
X in 16 ap_none X scalar

Figure 4. Generated interface signals

You can see the design expects x input as 16-bit scalar and outputs y via pointer of the 16-bit
data. It also has ap_vld signal to indicate when the result is valid.

Add PIPELINE directive to loop and re-synthesize the design. View the
synthesis results.

Make sure that the fir.c is open in the information view.

Select the Directive tab, and apply the PIPELINE directive to the loop.

Select Solution > Run C Synthesis > Active Solution to start the synthesis process.

When synthesis is completed, the Synthesis Results will be displayed in the information pane.

Note that the latency has reduced to 62 or 63 clock cycles. The DSP48 and BRAM consumption
remains same; however, LUT and FF consumptions have slightly increased.

Zynqg 4-6 www.xilinx.com/university (' XI LINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Creating a Processor System Lab

Run RTL/C CoSimulation Step 4

4-1.

Run the RTL/C Co-simulation, selecting Verilog. Verify that the simulation
passes.

4-1-1. Select Solution = Run C/RTL Co-simulation or click on the ! button to open the dialog box
so the desired simulations can be run.
A C/RTL Co-simulation Dialog box will open.

4-1-2. Select the Verilog option and click OK.
The Co-simulation will run, generating and compiling several files, and then simulating the design.
In the console window you can see the progress. When done the RTL Simulation Report shows
that it was successful and the latency reported was 62.

Setup IP-XACT Adapter Step 5

5-1. Add INTERFACE directive to create AXl4LiteS adapters so IP-XACT adapter
can be generated during the RTL Export step.

5-1-1. Make sure that fir.c file is open and in focus in the information view.

5-1-2. Select the Directive tab.

5-1-3. Right-click x, and click on Insert Directive....

5-1-4. Inthe Vivado HLS Directive Editor dialog box, select INTERFACE using the drop-down button.

5-1-5. Click on the button beside mode (optional). Select s_axilite.

5-1-6. In the bundle (optional) field, enter fir_io and click OK.

(' XI LINX www.xilinx.com/university Zynq 4-7

Xup@xilinx.com
© copyright 2017 Xilinx

Creating a Processor System Lab Lab Workbook

| Vivado HLS Directive Editor e

Directive

INTERFACE -

Destination
(") Source File
(@) Directive File

Options
mode (optional): s_axilite -
register (optional):]

depth (optional):

|| port (required):

offset (optional}:

bundle (optional):

clock name (optional):

name (optional):

Help] l Cancel] [OK

L w . - -

Figure 5. Selecting the AXI4LiteS adapter and naming bundle

5-1-7. Similarly, apply the INTERFACE directive (including bundle) to the y output.

Zynq 4-8 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2017 Xilinx

Lab Workbook Creating a Processor System Lab

, | Vivado HLS Directive Editor 2 |

Directive

INTERFACE -

Destination
(") Source File
(@) Directive File

Options
mode (optional): s_axilite -
register (optional):]

depth (optional):

port (required): y

offset (optional}:

bundle (optional):

clock name (optional):

name fontinnaly

Help] l Cancel] l OK

A

Figure 6. Applying bundle to assign y output to AXI4Lite adapter

5-1-8. Apply the INTERFACE directive to the top-level module fir to include ap_start, ap_done, and
ap_idle signals as part of bus adapter (the variable name shown will be return). Include the
bundle information too.

v www.xilinx.com/university Zynq 4-9
i‘ XI LINX“‘ Xup@xilinx.com

© copyright 2017 Xilinx

Creating a Processor System Lab

Lab Workbook

-

h

s | vivado HLS Directive Editor

Directive

INTERFACE

Destination
(") Source File
(@) Directive File

Options

mode (optional):

register (optional):

depth (optional):

offset (optional}:

bundle (optional):

clock name (optional):

name (optional):

s_axilite -

O

Help] l Cancel

o

Figure 7. Applying bundle to assign function control signals to AXl4Lite adapter

Note that the above steps 5-1-3 through 5-1-8 will create address maps for x, y, ap_start ap_valid,
ap_done, and ap_idle, which can be accessed via software. Alternately, ap_start, ap_valid,
ap_done, ap_idle signals can be generated as separate ports on the core by not applying
RESOURCE directive to the top-level module fir. These ports will then have to be connected in a
processor system using available GPIO IP.

Zynq 4-10

www.xilinx.com/university iv XI LlNX

Xup@xilinx.com

© copyright 2017 Xilinx

Lab Workbook

Creating a Processor System Lab

Generate IP-XACT Adapter

Step 6

6-1. Re-synthesize the design as directives have been added. Run the RTL
Export to generate the IP-XACT adapter.

6-1-1. Since the directives have been added, it is safe to re-synthesize the design. Select Solution >
Run C Synthesis > Active Solution

Check the Interface summary at the bottom of the Synthesis report to see the interface that has
been created.

6-1-2. Once the design is synthesized, select Solution > Export RTL to open the dialog box so the
desired IP can be generated.

An Export RTL Dialog box will open.

-

L5

Export RTL S |

Export RTL as IP

B

Format Selection

l[P Catalog VI lCaniguratiDn...

Evaluate Generated RTL

lVeriIDg VI
[Vivado RTL Synthesis
[] Place and Route

[] Do not show this dialog box again.

l OK] l Cancel

Figure 8. Export RTL Dialog

6-1-3. Click OK to generate the IP-XACT adapter.

6-1-4. When the run is completed, expand the impl folder in the Explorer view and observe various
generated directories; ip, misc, verilog and vhdl.

4 = impl

=g

» = misc

+ = verilog
» & vhdl

Figure 9. IP-XACT adapter generated

v www.xilinx.com/university
i‘ XI LINX” Xup@xilinx.com

© copyright 2017 Xilinx

Zyng 4-11

Creating a Processor System Lab

Lab Workbook

Expand the ip directory and observe several files and sub-directories. One of the sub-directory of
interest is the drivers directory which consists of header, c, tcl, mdd, and makefile files. Another
file of interest is the zip file, which is the ip repository file that can be imported in an IP Integrator

design

4 = ip
= autoimpl.log
auxiliary.xml
componentxml
fir_info.xml
=l packbat
W run_ippack.tc

= vivado.jou

=| vivado.log

[[

=/ xilink_com_hls_fir_1_0.zip |

- # constraints
& bd
- (= doc
= drivers
4 = firvl 0
4 (= data
|=l firmdd
o firtcl
4 (= 51C
L& Makefile
[€ xfir_hw.h
[€ sfir linux.c

[€ xfir_sinit.c
[xfir.c
[¢l xfirh

» = example

» &= hdl

» = misc

= subcare
+ = xgui

Figure 10. Adapter’s drivers directory

6-1-5. Close Vivado HLS by selecting File > Exit.

Zyng 4-12

www.xilinx.com/university
Xup@xilinx.com
© copyright 2017 Xilinx

& XILINX.

Lab Workbook

Creating a

Processor System Lab

Create a Vivado Project

Step 7

7-1.

Launch Vivado Tcl Shell and run the provided tcl script to create an initial

system targeting either the Zedboard (having xc7z020clg484-1 device) or
Zybo (having xc7z010clg400-1 device).

If you want to create the system from scratch then follow the steps
provided in Appendix and then continue from step 7-2 below.

7-1-1.

2017.4 > Vivado 2017.4 Tcl Shell

7-1-2.

7-1-3.

peripherals by typing the following command:

source zed_audio_project_create.tcl for ZedBoard or

source zybo_audio_project_create.tcl for Zybo

The script will be run and the initial system, shown below, will be created.

processing_system?_0

&
FIXED 104

MmmmZYNO‘ M_AXT GRO 4 i

Open Vivado Tcl Shell by selecting Start > All Programs > Xilinx Design Tools > Vivado

In the shell window, change the directory to c:/xup/hls/labs/lab4 using the cd account.

Run the provided script file to create an initial system having zed_audio_ctrl and GPIO

=00
— 1t]
0C_ 14 _| »IC_1

DORG

FOLK_ CLKO=
LK LKL [FOLK_C1K]1
FCLK_RESETO_N
YN Processing System)
SOATA_I[> |
" " axi_gpio_0
rst ps7_0_100M ps7_0_axi_periph A
P - | S | Dcro
et gyrie ok mb_resete b | = S00_AXT 3 axl adk - o it [GPI02
—=Chenit_reset_in bus_struct_reset[0:0] = ———ACLK ————————& axi_anmwtn "
~Dau_reset_in peripheral_reset(0:0] = ——ARESETH : e,
=mb debug sys rst interconnect aresetn[0:0] =soo_acik ezl r s
—cem_locked peripheral_; s00_ARESETN [1] :MW m'}';; _ zed_audio_arl 0
g I R iy o P
ProCessar System Re i | " .
e ["R L:::“ g[‘:i::lxk
=1 _ATLK —5_AXI_ACLK o B . o
MO1_ARESETH | e —— 0 {5 SDATA
AXI Interconnect ed_audio_ctrl

Figure 11. Block design having zed_audio_ctrl and connections made for ZedBoard

RECDAT [

processing_system?_0

ook | —

= TC_1 !I—D"C_l
M_A_GPO_ACLK ZY NO AN _GPO e ey
FOLK_RESETO_ N
YNE)? Pro 1
axi_gpio 0
rst_ps7_0_100M ps?_0_axi_periph | J
== - o6 5_ax1
m g P10
shonwest_syric_clk mo_reset il 5500 AXI 01 aclk mw\ |I|—'—Dg:gz
= s acix ot ey T2 >
mib_debug sys rst | ok Hem A GPID
7 . 0D A i
[eriphveral S00_ARESETN [i§[I|-m m{.i; ; zybo_audio_ctrl_0
e Tiese MOAIK ESm L s o — T
S MIOO_ARESETN ~RECDAT PRLACLK— [PBLROLK
=0 1_ACLE =5 _A¥I_ACLK RECLACL K S RECLRCLK
MOLARESETH ————————{_»PODATA

A¥T Tnterconnect

Py AX] ARESETH PBDATA

zybn_audio_ctrl

Figure 11. Block design having zybo_audio_ctrl and connections made for Zybo

& XILINX.

www.xilinx.com/university

Xup@xilinx.com
© copyright 2017 Xilinx

Zynq 4-13

Creating a Processor System Lab

Lab Workbook

7-2. Addthe HLS IP to the IP Catalog

7-2-1. In the Flow Navigator pane, click Settings under Project Manager.

7-2-2. Expand IP > Repository in the left pane.

7-2-3. Click the + button (The lab4/ip_repo directory has already been added). Browse to
c:\xup\hls\labs\lab4\fir.prj\solution\impl\ip and click Select.

The directory will be scanned and added in the IP Repositories window, and one IP entry will be
detected.

7-2-4. Click OK.

e

’

Settings -

=x=)

Project Settings
General
Simulation
Elaboration
Synthesis
Implementation
Bitstream

~ P

Repository

Packager

Tool Settings

Project

IP Defaults

Source File

Display

WebTalk

Help

Text Editor

3rd Party Simulators

W

» Colors
Selection Rules
Shortcuts

> Strategies

> Window Behavior

|r'7\|
p

IP > Repository

Add directories to the list of repositories. You may then add additional
IP to a selected repository. If an IP is disabled then a tool-tip will alert ‘

you to the reasan.

IP Repositories

+|= 1

chxupfhlsiabsflabdiip_repo (Froject)

|chupihlsabsiab4fir.prilsolution 1/implip (?’mject)l

| Cancel | ‘ Apply ‘ ‘Bestore...

Refresh All

L

Figure 12. Setting path to IP Repositories

7-2-5. Click OK to accept the settings.

Zynq 4-14

www.xilinx.com/university
Xup@xilinx.com
© copyright 2017 Xilinx

& XILINX.

Lab Workbook Creating a Processor System Lab

7-3. Instantiate fir_top core twice, one for each side channel, into the
processing system naming the instances as fir_left and fir_right.

7-3-1. Click the Add IP icon *+ and search for Fir in the catalog by typing Fir and double-click on the
Fir entry to add an instance.

Notice that the added IP has HLS logo in it indicating that this was created by Vivado HLS.

7-3-2. Select the added instance in the diagram, and change its instance name to fir_left by typing it in
the Name field of the Block Properties form in the left.

7-3-3. Similarly, add another instance of the HLS IP, and name it fir_right.

7-3-4. Click on Run Connection Automation, and select All Automation

7-3-5. Click on ffir_left/s_axi_fir_io, and /fir_right/ s_axi_fir_io and verify that they will both be
connected to the M_AXI_GPO0, and click OK.

7-4. Enable the PS-PL Interrupt ports > IRQ_F2P ports. Add an instance of
concat IP with two single-bit input ports. Connect input ports to the
interrupt ports of the two FIR instances and the output port to the IRQ_F2P
port of the processing_system7_0 instance.

7-4-1. Double-click on the processing_system7_0 instance to open the re-customization form.

7-4-2. Select the Interrupt in the left pane, click on the Fabric Interrupts check box in the right.

7-4-3. Expand the Fabric Interrupts > PL-PS Interrupt Ports > IRQ_F2P entry in the right, and click the
check-box of IRQ_F2P[15:0].

7-4-4. Click OK.

7-4-5. Add an instance of the concat IP.

7-4-6. Connect the interrupt port of each of the FIR instances to the two input ports of the xlconcat_0
instance.

7-4-7. Connect the output port of the xlconcat_0 instance to the IRQ_F2P port of the
processing_system7_0 instance.

At this stage the design should look like shown below (you may have to click the regenerate
button).

i' XILINX www.xilinx.com/university Zynq 4-15

Xup@xilinx.com
© copyright 2017 Xilinx

Creating a Processor System Lab Lab Workbook

processing_system7_0

0L !!—Dllc_l

1_AXLGPO_ACLE - - e
IIRQF2P[0:0] ZYNQ. n_m_@;x i
weoncat 0 FOK_CLKL [y FOLK_CLKL
Yooy
Y TYNQ7 Processing System
Concat
- 0 =i serioh fir_left
i _peri —————
| rst_ps7_0_100M @ pel 2o perp 2|t it o [t i
siovest_sync_ck nl:.l?—'ﬂ|- b [P S00_AXI P ok ' intermup
i bus sty ACLK pLrst_n
u_reset_in peripheral_reset[0:0] ARESETN
Lo Fir (Pre-Production)
mb_detai_g=_r=t ; ! ALK fir_right
dem_locked peripheral_ar L[I ARESETN i e
WoACK [o MO AN R ¢ I s i fir_jo [Ve i
—— S ANTeL =
Processor System Reset 100 ARESETN [Dm1_ H .ok ' -
LAGK WE e g nrsn
—3.»“1“- Fir (Pre-Production)
W2 ARESETN axi_gpio_0
A0 oL,
ARESETN ts lra-"“ G108k || e[GPIO
AXI Interconnect i |l D crioz
AT GPIO
zed_audio_drl 0
s
™ BOK|— [
SDATA_ T[> SPATAL ROK—————————— Enlz-!'fk
S_AXT_ACLK
SDATA Qf————— ™
5 AXI ARESETN AD SDATA_O
zed_audic_cirl

(a) ZedBoard

processing_systemy_0

008 | jreeeeee TS DOR

FIXED_10: . || S FIXED_IO
TC_1] || e S 151
M_AXI_GPD_ACLK - o -
F20[0:0] ZYNQ "'mu‘“:"n -
Aconcat_0 -
= FOLK_CLKL {»FOLK_CLKL
&Iﬂfﬂl doug1:0] el ARl
a ZYNQ? Processing System
Concat
ret ps7_0_100M o ps7_0_axi_periph
0
syc_ck it reset (= il 500_A0XT fir_left
reset_in Bus_struct_reset{0:0] jm —=fho e
i _reset_in perigheral_reseqi:q) m | TH - = ~
ni_clebiug_sys_rst i p— =500 ACLK - ‘ -
demn_lacked pesigheral |_MRESETH S
Precessor System Reset a0 Fir {Pre-Production)
cessor System R mssz%j fir_right
'_-mtf:;_ml— Sz ! ol o5 i fie i [emase s s 7
p—=fH02_ACLE il ‘ -
2_ARESETN N
p— =03 ACLK Fir {Pre-Production)
3_ARESETN
zyba_audio_ctrl 0
AXT Interconnect Hro - BOLK
RECDAT > ECOAT PRACK = T"SPRIACLE
ALK RECACK———— [SRECLRCLK
_AXI_RESETN PEOATA————— SPEDATA
Zyba_audio_drl
axi_gpio_0
ol o5 AT .
-] GPID || e G PLO)
A ackk ;
i GPIO2: || | S 5 PLO2
AR GPIO
(b) Zybo

Figure 13. The complete hardware design

7-5.

Verify addresses and validate the design. Generate the system_wrapper file,

and add the provided Xilinx Design Constraints (XDC).

7-5-1. Click on the Address Editor, and expand the processing_system7_0 > Data if necessary.

Zynq 4-16 www.xilinx.com/university
xup@xilinx.com

© copyright 2017 Xilinx

& XILINX.

Lab Workbook Creating a Processor System Lab

The generated address map should look like as shown below.

Z= Diagram X | B8 Address Editor x

N el Slave Interface Base Name Offset Address Range High Address

==

e —Q processing_system7_0

23| [EE Data (32 address bits : 4G)
e axi_gpio_0 S_AXI Reg 0x4120_0000 64K = 0x4120_FFFF

= i~== zed_audio_ctrl_0 S_AXI regl 0x43C0_0000 64K = 0x43C0O_FFFF

om fir_left s_axi_fir_io Reg 0x43C1_0000 64K * 0x43C1_FFFF
~m fir_right s_axi_fir_io Reg 0x43C2_0000 64K = 0x43C2_FFFF

(a) ZedBoard

Z= Diagram X | B Address Editor x

A call Slave Interface Base Name Offset Address Range High Address

== ;
wda | 5-4F processing_system?7_0
= —}H Data (32 address bits : 0x40000000 [1G 1)

o= gxi_gpio_0) S_AXI Reg 0x4120_0000 64K ~ 0x4l20_FFFF
= zybo_audio_ctrl_0 S_AXI regQ 0x6000_0000 64K ~ 0x6000_FFFF
e fir_left s_axi_fir_io Reg 0x43C0_0000 64K = 0x43CO_FFFF
~m fir right s axi fir io Req 0x43C1 0000 64K = 0x43Cl FFFF
(b) Zybo

Figure 14. Generated address map

7-5-2. Run Design Validation (Tools > Validate Design) and verify there are no errors

7-5-3. In the sources view, right-click on the block diagram file, system.bd, and select Create HDL
Wrapper to update the HDL wrapper file. When prompted, click OK with the Let Vivado manage
wrapper and auto-update option.

7-5-4. Click Add Sources in the Flow Navigator pane, select Add or Create Constraints, and click
Next.

7-5-5. Click the Add Files button, browse to the c:\xup\hls\labs\lab4 folder, select
zed_audio_constraints.xdc or zybo_audio_constraints.xdc

7-5-6. Click Copy constraints files into project and then click Finish to add the file.

7-5-7. Click on the Generate Bitstream in the Flow Navigator to run the synthesis, implementation, and
bitstream generation processes.

7-5-8. Click Save, Yes, and OK if prompted to start the process.

7-5-9. When the bit generation is completed, a selection box will be displayed with Open Implemented
Design option selected. Click Cancel.

Export to SDK and create Application Project Step 8

8-1. Export the hardware along with the generated bitstream to SDK.

8-1-1. Select File > Export > Export Hardware...

(' XILINX www.xilinx.com/university Zynq 4-17

- e Xup@xilinx.com

© copyright 2017 Xilinx

Creating a Processor System Lab Lab Workbook

8-1-2. Make sure that Include Bitstream option is selected and click OK, leaving the target directory set
to local project directory.

8-1-3. Select File > Launch SDK
8-1-4. Click OK.
8-1-5. In SDK, select File > New > Board Support Package.

8-1-6. Click Finish with the default settings (with standalone operating system).

This will open the Software Platform Settings form showing the OS and libraries selections.

8-1-7. Click OK to accept the default settings, as we want to create a standalone_bsp_0 software
platform project without requiring any additional libraries support.

The library generator will run in the background and will create xparameters.h file in the
C:\xup\his\labs\lab4\audio\audio.sdk\standalone_bsp_O\ps7_cortexa9 O\include\ directory.

8-1-8. Select File > New > Application Project.

8-1-9. Enter TestApp as the Project Name, and for Board Support Package, choose Use Existing
(standalone_bsp should be the only option)

8-1-10. Click Next, and select Empty Application and click Finish

8-1-11. Select TestApp in the project view, right-click the src folder, and select Import.
8-1-12. Expand General category and double-click on File System.

8-1-13. Browse to c:\xup\hls\labs\lab4 folder and click OK

8-1-14. Select both zed_testapp.c and zed_audio.h for ZedBoard or zybo_testapp.c and
zybo_audio.h for Zybo and click Finish to add the file to the project.

The program should compile successfully.

Verify the Design in Hardware Step 9

9-1. Zybo: Make sure that the JP7 is set to select USB power.

Connect a micro-usb cable between a PC and the JTAG port of the board.
Connect an audio patch cable between the Line In jack and the speaker
(headphone) out jack of a PC. Connect a headphone to the Line Out jack
(ZedBoard) or HPH OUT (Zybo) on the board. Power ON the board.

9-1-1. Zybo only: Make sure that the JP7 is set to select USB power.

Zyng 4-18 www.xilinx.com/university v
Xup@xilinx.com (A XI I_INX_,,

© copyright 2017 Xilinx

Lab Workbook Creating a Processor System Lab

9-1-2.

9-1-3.

9-1-4.

9-1-5.

9-1-6.

9-1-7.

9-1-8.

9-1-9.

Connect a micro-usb cable between a PC and the JTAG port of the board.

Connect an audio patch cable between the Line In jack and the speaker (headphone) out jack of
aPC.

Connect a headphone to the Line Out jack on ZedBoard or HPH Out jack on Zybo board. Power
ON the board.

Select Xilinx > Program FPGA.

Make sure that the system_wrapper.bit bitstream is selected and the BMM file field is blank.

Click Program.

This will configure the FPGA.

Double-click corrupted_music_4KHz.wav or some other wave file of interest to play it using the
installed media player. Place it in the continuous play mode.

Right-click on the TestApp in the Project Explorer pane and select Run As > Launch On
Hardware (System Debugger).

The program will be downloaded and run. If you want to listen to corrupted signal then set the
SWO0 OFF. To listened the filtered signal set the SWO0 ON.

9-1-10. When done, power OFF the board.

9-1-11. Exit SDK and Vivado using File > Exit.

Conclusion

In this lab, you added RESOURCE directive to create an IP-XACT adapter. You generated the IP-XACT
adapter during the implementation phase. You then created a processor system using IP Integrator,
integrated the generated IP-XACT adapter, and tested the system with the provided application.

Answers

1. Answer the following questions:

Estimated clock period: 8.70 ns (zedboard) 7.38 ns (zybo)
Worst case latency: 174 (zedboard) 175 (zybo) clock cycles
Number of DSP48E used: 3
Number of BRAMSs used: 0
Number of FFs used: 167 (zedboard) 168 (zybo)
Number of LUTs used: 154 (zedboard) 157 (zybo)
i: XILINXJ www.xilinx.com/university Zyng 4-19

Xup@xilinx.com
© copyright 2017 Xilinx

Creating a Processor System Lab Lab Workbook

Appendix
Create a Project using Vivado GUI Step 10
10-1. Launch Vivado and create an empty project targeting the Zedboard (having

10-1-1.

10-1-2.

10-1-3.

10-1-4.

10-1-5.

10-1-6.

xc7z020clg484-1 device) or Zybo (having xc7z010clg400-1 device) and
using the Verilog language.

Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2017.4 >
Vivado 2017.4

Click Create New Project to start the wizard. You will see the Create a New Vivado Project
dialog box. Click Next.

Click the Browse button of the Project Location field of the New Project form, browse to
c:\xup\hls\labs\lab4, and click Select.

Enter audio in the Project Name field. Make sure that the Create Project Subdirectory box is
checked. Click Next.

Project Name

Enter a name for your project and specify a directory where the project data files '?}/
will be stored

Project name:

Project location: |C:;‘xup;‘h|s/labsflab4| E]

Create project subdirectory l

Project will be created at: C:/xup/hls/labs/lab4/audio

< Back J[Next >] Finish Cancel |

.\ = T

Figure A-1. Project Name entry

Select RTL Project in the Project Type form, and click Next.

Select Verilog as the Target language and Simulator Language in the Add Sources form, and
click Next.

Zyng 4-20 www.xilinx.com/university i' XI LINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Creating a Processor System Lab

Add Sources v
Specify HDL and netlist files, or directories containing HDL and netlist files, to add ‘:l_,
to your project. Create a new source file on disk and add it to your project. You

[Add Files...] [Add Directories...] | Create File...]

Scan and add RTL incdlude files into project
Copy sources into project I

Add sources from subdirectories]

Target language: Simulator language:

I; < Back EH Next >] Finish]

" Fagees o }

Figure A-2. Add sources to new project

10-1-7. Click Next two times to skip Adding Existing IP and Add Constraints dialog boxes

10-1-8. In the Default Part form, select Boards, and either select Zedboard Zynq Evaluation and
Development Kit or Zybo. Click Next.

If you don’t see Zybo entry and wants to target Zybo board then please read readme_zybo.docx file and
install the zybo board files in the Vivado installation directory.

#- New Project ﬂ
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. '
Select: @ Parts I Boards
4 Filter
Vendor: All *»
Display Name: | All h
Board Rey: Latest >
Reset All Filters
Search: | Q.-
" Choose Zybo or ZedBoard)
Display Name Vendor Board Rev
:Im-
@ MicroZed Board em.avnet.com f @ xc7z010clg400-1 400 E
ZedBoard Zyng Evaluation and Development Kitlem.avnet.com d @ xc7z020clgd84-1 484 1 2 r
Artix-7 AC701 Evaluation Platform xilinx.com 11 @ xc7a200tfbg676-2 676 1.1
B Basys 3 Evaluation Platform xilinx.com 1.0 @ xc7a35tcpg236-1 236 1.0
M Kintex-7 KC705 IIEHaI_uation Platform xilinx.com 1:1 @ xc7k325tffa900-2 900 13 é
Ll | L) (=]
< Back][Next > inisl Cancel

Figure A-3. Boards and Parts selection

10-1-9. Check the Project Summary and click Finish to create an empty Vivado project.

(' XI LINX www.xilinx.c_qm/university Zynq 4-21

xup@xilinx.com
© copyright 2017 Xilinx

Creating a Processor System Lab Lab Workbook

Creating the System Using the IP Integrator Step 11

11-1. Usethe IP Integrator to create a new Block Design, and generate the ARM
Cortex-A9 processor based hardware system.

11-1-1. In the Flow Navigator, click Create Block Design under IP Integrator

Flow Navigator = 8 ? _
~ PROJECT MANAGER
£} Settings
Add Sources
Language Templates

F IP Catalog

¥ IP INTEGRATOR

Create Block Design

Open Block Design

Generate Block Design

Figure A-4. Create IP Integrator Block Diagram
11-1-2. Enter system for the design name and click OK

11-1-3. IP from the catalog can be added in different ways. Click on Add IP in the message at the top of

the Diagram panel, or click the Add IP icon %+ in the block diagram side bar, press Ctrl + I, or
right-click anywhere in the Diagram workspace and select Add IP.

11-1-4. Once the IP Catalog is open, type “zy” into the Search bar, find and double click on ZYNQ7
Processing System entry, or click on the entry and hit the Enter key to add it to the design.

The Zynq block will be added.

&= Diagram X [Address Editor X O x

| &, system

[Designer Assistance available. Run Block Automation

processing_system7_0

oDR 4= |||

o FIXED_10+ |||

M_AXI_GPO_ACLK ZYNQ M_AFEILiE{EKq}-D I
FCLK_RESETO_N

ity PRH G 718 R 2

I;.

“‘J::t |
1

ZYNQY Processing System

=
N

4 3

Figure A-5. The Zynq IP Block

11-1-5. Notice the message at the top of the Diagram window that Designer Assistance available. Click
on Run Block Automation and select /processing_system7_0

Zyng 4-22 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2017 Xilinx

Lab Workbook

Creating a Processor System Lab

11-1-6. Click OK when prompted to run automation.

Notice that external ports have been automatically added for the DDR and Fixed 10 once Block
Automation has been complete; some of the other default ports are also added to the block.

processing_system7_0

M_AX_GPO_ACLK ZYNQ‘

processing_system7_0

PTP_ETHERNET_04- ||

) DDR DDR - ||f=——"3 DDR
FIXED 104 || "3, FIXED_IO e 104 =3 Fixe0_10
SDI0_0 < [|]
USBIND_04- || USBIND_0<- |||
M_AXI_GPO- i oo

TTCO_WAVED_OUT
TTCO_WAVEL_OUT
TTCO_WAVE2_OUT
FCLK_CLKO
FCLK_RESETO_N

M_AXL GPO_ACLK ZYNQ‘

M_AXI_GPO fif
TTEO_WAVED_OUT
TTCO_WAVEL_OUT
TTCO_WAVE2_OUT
FCLK_CLKO
FCLK_RESETD_N

ZYNQ7 Processing System ZYNQ7 Processing System
(a) ZedBoard (b) Zybo
Figure A-6. Zynq Block with DDR and Fixed 10 ports

11-1-7. In the block diagram, double click on the Zynq block to open the Customization window for the
Zyng processing system.

A block diagram of the Zyng should now be open, showing various configurable blocks of the
Processing System.

At this stage, the designer can click on various configurable blocks (highlighted in green) and
change the system configuration.

11-2. Configure I/O Peripherals block to use UART 1 and 12C 1 peripherals,
disabling other unwanted peripherals. Uncheck Timer 0. Enable
FCLK_CLK1, the PL fabric clock and set its frequency either to 10.000 MHz
for the ZedBoard or to 12.288 MHz for the Zybo.

11-2-1. Select the MIO Configuration tab on the left to open the configuration form and expand 1/0O
Peripheral in the right pane.

11-2-2. Click on the check box of the 12C 1 peripheral. Uncheck USBO, SD 0, ENET 0, GPIO > GPIO
MIO as we don’t need them.

11-2-3. Expand the Application Processing Unit group in the Select the MIO Configuration tab and
uncheck the Timer 0.

11-2-4. Select the Clock Configuration in the left pane, expand the PL Fabric Clocks entry in the right,
and click the check-box of FCLK_CLK1.

11-2-5. Change the Requested Frequency value of FCLK_CLK1 to 10.000 MHz for the ZedBoard or
12.288 MHz for the Zybo.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2017 Xilinx

Zynq 4-23

& XILINX.

Creating a Processor System Lab Lab Workbook

Peripheral I/0 Pins Companent Clock Source Requested Frequ...

wi | Ik

[Processor/Memory Clocks
[10 Peripheral Clocks
Clock Configuration | E} PL Fabric Clocks

MIC Configuration

i b || FCLK_CLKD .10 FLL] 100.000000
DDR Configuration — | v:

FCLK_CLK1 I0 PLL - -IU.DUUEIEIU ‘
SMC Timing Calculation T i :

D FCLK_CLK2 I0 PLL 50.000000

Interrupts -] FoLK_CLK3 I0 PLL 50

(a) ZedBoard

g =1

| Component Clock Source Reguested Frequ... Actual Freguency... Range(MHz)
E'% [Timers

- System Debug Clocks
[+ Processor/Memory Clocks

-~ [] Fok_cLk3 10 PLL 50 50.000000 0.100000 : 250.000000

[FCk_cLkz 10 PLL 50 50.000000 0.100000 : 250.000000

FCLK_CLK1 10 PLL ¥ |12.288 12.280702 0.100000 : 250.000000

FCLK_CLKO 10 PLL - 100 100.000000 0.100000 : 250.000000
(b) Zybo

Figure A-7. Enabling and setting the frequency of FCLK_CLK1

11-2-6. Click OK.

Notice that the Zyng block only shows the necessary ports.

11-3. Add the provided 12C-based either zed_audio_ctrl IP for the ZedBoard or
zybo_audio_ctrl IP for the Zybo to the IP Catalog

11-3-1. In the Flow Navigator pane, click Settings under Project Manager.
The IP Catalog will open.
Flow Navigator = 8 ? _
~ PROJECT MANAGER

| £ Settings |

Add Sources

Language Templates

<LF P Catalog

v P INTEGRATOR

Create Block Design
Open Block Design

Generate Block Design

Figure A-8. Invoking Project Settings

Zynq 4-24 www.xilinx.com/university i' XI LINX

xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Creating a Processor System Lab

11-3-2. Expand IP > Repaository in the left pane.

11-3-3. Click the + button. Browse to c:\xup\hls\labs\lab4\ip_repo and click Select.

The directory will be scanned and added in the IP Repositories window, and two IP entry will be
detected.

-

A

’

Settings - Lﬂ_hf

IP > Repository
Project Settings Add directories to the list of repositaries. You may then add additional
IP to a selected repository. If an IP is disabled then a tool-tip will alert ‘
General
you to the reason.

Simulation

Elaboration

IP Repositories
Synthesis P

Implementation +|= %

Bitstream chuphlsiabsiabddfip_repo (Project)

> IP

Repository

P
\2) | Cancel | | Apply | |Best0re...

Packager

Tool Settings

IP Defaults

Source File

Display

WebTalk

Help

Text Editar

3rd Party Simulators

» Colors

w

Selection Rules
Shortcuts N

w

Strategies

» Window Behavior

Figure A-9. Adding IP repository for the provided 12C based cores

11-3-4. Click OK to accept the settings.

11-4. ZedBoard: Instantiate zed_audio_ctrl and GPIO with width of 2 bits on
channel 1 and width of 1 bit input only on channel 2.

Zybo: Instantiate zybo_audio_ctrl and GPIO with width of 1 bit output only
on channel 1 and width of 1 bit input only on channel 2.

Run connection automation to connect them.

£ XILINX www.xilinx.com/university Zyng 4-25

Xup@xilinx.com
© copyright 2017 Xilinx

Creating a Processor System Lab Lab Workbook

11-4-1.

11-4-2.

11-4-3.

11-4-4.

11-4-5.

11-4-6.

11-4-7.

11-4-8.

11-4-9.

Click the Add IP button + if the IP Catalog is not open and search for AXI GPIO in the catalog
by typing gpi and double-click on the AXI GPIO entry to add an instance.

Click on the Add IP to Block Design button.

Double-click on the added instance and the Re-Customize IP GUI will be displayed.
Change the Channel 1 width to 2 for the ZedBoard or width of 1 output only for the Zybo.
Check the Enable Dual Channel box, set the width to 1 input only, and click OK.

Similarly add an instance of either the zed_audio_ctrl for the ZedBoard or the the zybo_audio_ctrl
for the Zybo.

Notice that Design assistance is available. Click on Run Connection Automation, and select
/axi_gpio_0/S_AXI

Click OK to connect it to the M_AXI_GPO interface.

Notice two additional blocks, Proc Sys Reset, and AXI Interconnect have automatically been
added to the design.

Similarly, click on Run Connection Automation, and select either /zed_audio_ctrl_0/S_AXI for
the ZedBoard or the /zybo_audio_ctrl_0/S_AXI for the Zybo and click OK.

11-5. Make lIC 1, GPIO, FCLK_CLK1, and either zed_audio_ctrl or
zybo_audio_ctrl ports external.

11-5-1. Select the GPIO interface of the axi_gpio_0 instance, right-click on it and select Make External to
create an external port. This will create the external port named GPIO and connect it to the
peripheral.

11-5-2. Select the GPIO2 interface of the axi_gpio_0 instance, right-click on it and select Make External
to create the external port.

11-5-3. Similarly, selecting one port at a time either of the zed_audio_ctrl_0 instance or the
zybo_audio_ctrl_0 instance, make them external.

11-5-4. Similarly, make the IIC_1 interface and FCLK_CLK1 port of the processing_system7_0 instance
external.

At this stage the design should look like shown below (you may have to click the regenerate | @]
button).

Zyng 4-26 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2017 Xilinx

Creating a Processor System Lab

Lab Workbook
processing_system7_0
DDR - | s > DDR.
FIXED 1045 || e Ty FIXED_IO
- nc_i4 !!—:)HCJ
M_AXI_GPO_ACLK ZYNQ M_AXT_GPO < [e
: FCLK_CLKO!
FCLK_CLK1, [>FCLK_CLK1
FCLK_RE;EI’“_NF—
ZYNQ7 Processing System
SDATA_I[> ;
axi_gpio_0
rst_ps7_0_100M ps7_0_axi_periph o
i crio4 |1
lowest_sync_ck mb_reset} axi_adk GPIOZ%] nggz
' reset_in bus_struct_reset[0:0] axi_aresetn +Ir
“Qaux_reset_in peripheral_reset[0:0] X CPIO
=imb_debug_sys rst interconnect ar 0]
=—dcm_locked peripheral_aresetn[0: O} M
Processor System Reset ;“'mjr:xi BCLK [»BCLK
- LRCLK [>LRCLK
ALl SDATA_O| SDATA_O
_ARESETN _AXL_ARESETN - = =
AXT Interconnect zed_audio_trl

Figure A-10. Block design after 12C based zed_audio_ctrl core added and connections
made for the ZedBoard

processing_system7_0

DBOR: |||=———[>DDR
FIXED_10 4 ||| e > FIXED_IO
- —DHC_[
M_AXI_GPO_ACLK ZYNQ
[FCLK_CLK1
ZYNQ? Processing System
RECDAT >
axi_gpio_0
rst_ps7_0_100M - ps7_0_axi_periph <
= T| S Il
Jowest_sync_clk mb_reset = | 4-500_AX1 . axi_adk G(:;g+ H Dg;igz
' reset_in bus_struct_reset[0:0] ACLK _axi_aresetn *|it D
«Qlaux_reset_in peripheral_reset[0:0] m RESETN I GPIO
=mb_debug sys rst Imermnne\:t,arsetn[o:cyl—l oo_ack [Dm“ AXI b dio_ctrl 0
—ldem_locked peripheral_aresetr[0:0}) ARESETN D§Dmfm __7ybo_audio ar. 9
Processor System Reset MO0ACIE h S o D ecLk
1MO0_ARESET RECDAT PBLRCLK] {"> PBLRCLK
MO1_ACLK S_AXI_ACLK RECLRCLK| [RECLRCLK
M01_ARESETN _AXI_ARESETN PBDATA {"> PBDATA
AXI Interconnect zybo_audio_ctrl

Figure A-10. Block design after I12C based zybo_audio_ctrl core added and connections
made for the Zybo

v Xilinx.com/universit Zynq 4-27
£ XILINX e /
© copyright 2017 Xilinx

