Lab Workbook Vivado HLS Design Flow Lab

Vivado HLS Design Flow Lab

Introduction

This lab provides a basic introduction to high-level synthesis using the Vivado HLS tool flow. You will use
Vivado HLS in GUI mode to create a project. You will simulate, synthesize, and implement the provided
design.

Objectives

After completing this lab, you will be able to:

Create a new project using Vivado HLS GUI

Simulate a design

Synthesize a design

Implement a design

Perform design analysis using the Analysis capability of Vivado HLS
Analyze simulator output using Vivado and XSim simulator

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 8 primary steps: You will create a new project in Vivado HLS, run simulation, run
debug, synthesize the design, open an analysis perspective, run RTL co-simulation, view simulation
results using Vivado and XSim, and export and implement the design in Vivado HLS.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:
Creating a Run C Run Synthes_lze Analyze using
New |:> Simulation |:> Debugger E> the design :> Analysis
Project Perspective
Step 6: Step 7: Step 8:
Run C/RTL Viewing Export RTL
Co-Simulation |:> Simulation |:> pand
Results in Implement
Vivado P

v www.xilinx.com/university Zyng 1-1
i‘ XI LINXJ Xup@xilinx.com

© copyright 2017 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

Create a New Project Step 1

1-1.

1-1-1.

1-1-2.

1-1-3.

1-1-4.

Create a new project in Vivado HLS targeting Zyng xc7z020clg484-1
(ZedBoard) or xc7z010clg400-1 (Zybo).

Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2017.4 >
Vivado HLS > Vivado HLS 2017.4

A Getting Started GUI will appear.

VIVADQ! XILINX

HLS ALL PROGRAMMABLE.

Quick Start
— =\
i z
= \ \'. rg
Create New Project Open Project Open Example Project
Documentation
Tutorials User Guide Release Notes Guide

Figure 1. Getting Started view of Vivado-HLS

In the Getting Started GUI, click on Create New Project. The New Vivado HLS Project wizard
opens.

Click the Browse... button of the Location field and browse to c:\xup\hls\labs\lab1 and then click
OK.

For Project Name, type matrixmul.prj

¢ New Vivado HLS Project L ___X .
Project Configuration AG J
Create Vivado HLS project of selected type LJ

Project name: matrixmul.prj|

Location: Chxuphhis\labs\labl Browse...

Figure 2. New Vivado HLS Project wizard

Zyng 1-2 www.xilinx.com/university i' XI LINX

xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

1-1-5. Click Next.

1-1-6. In the Add/Remove Files window, type matrixmul as the Top Function name (the provided
source file contains the function, to be synthesized, called matrixmul).

1-1-7. Click the Add Files... button, select matrixmul.cpp file from the c:\xup\hls\labs\lab1 folder, and
then click Open.

1-1-8. Click Next.

1-1-9. Inthe Add/Remove Files for the testbench, click the Add Files... button, select
matrixmul_test.cpp file from the c:\xup\hls\labs\lab1 folder and click Open.

1-1-10. Select the matrixmul_test.cpp in the files list window and click the Edit CFLAG... button, type
-DHW_COSIM, and click OK. (This defines a custom flag that will be used later.)

1-1-11. Click Next.

1-1-12. In the Solution Configuration page, leave Solution Name field as solution1 and set the clock
period as 10 (for ZedBoard) or 8 (for Zybo). Leave Uncertainty field blank it will take 1.25 as the
default value for ZedBoard and 1 for Zybo.

Click the ... button in the Part Selection section.
1-1-13. In the Device Selection Dialog page, select Parts Specify field, and select the following filters to
select the xc7z020clg484-1 (ZedBoard) or xc7z010clg400-1 (Zybo) part, and click OK:
o Family: Zynq
o Sub-Family: Zynq
o Package: clg484 (for ZedBoard) or clg400 (for Zybo)
o Speed Grade: -1
Filter
Product Category: | All ~ | Package: 1g484] -
Family: All ~ | Speed grade: v
Sub-Family: zynq ~ | Temp grade: | All 7
Search: =
Part Family Packa.. Speed SLICE LUT FF DSP BRAM
@ xc7z020clg484-1 zyng clg484 -1 13300 53200 106400 220 280 |
&P xc7z014sclg484-1 zynq clg484 -1 10150 40600 81200 170 214
v www.xilinx.com/university Zyng 1-3
i‘ XILINX*’ Xup@xilinx.com

© copyright 2017 Xilinx

Vivado HLS Design Flow Lab

Lab Workbook

F

Filter
Product Category: | All ~ Package: clg400 -
Family: All ~ Speed grade: |-1 -
| Sub-Family: Zyng ~ Temp grade: | All -
Reset All Filters
Search: =
Part Family Packa.. Speed SLICE LuT FF DsP BRAM
@@ xc7z020cg400-1 zyng clgdoo -1 13300 53200 106400 220 280
& xc7z014sclg400-1 zyng clgdoo -1 10150 40600 81200 170 214
[|9 xc72010cig400-1 zyng clgddo -1 4400 17600 35200 80 120 |
&9 xc72007sclg400-1 zyng clgdoo -1 3600 14400 28800 66 100
[OK] l Cancel

Figure 3. Using Parts Specify option in Part Selection Dialog

You can also select the Boards specify option (only for ZedBoard) and select one of the listed
board if the desired target board is listed.

Select: & Boards

Filter
Vendor: All

Display Name: | All

|

5]

Reset All Filters

Search: =
Display Name Part Family Ven =
IEZedBoard Zyng Evaluation and Development Kit %c7z020clg484-1 zyng em.E|
[ZYNQ-7 ZC706 Evaluation Board xc7z045ffg900-2 zynq xilir
| | B zyNQ-7 ZC702 Evaluation Board %c7z020clg484-1 zynq xilir
B ZYNQ UltraScale+ ZCU106-ES2 Evaluation Platform xczulev-fivcll5e-2-i-es2 zynguplus xilir _
< | :
[OK] I Cancel

Figure 4. Using Boards Specify option in Part Selection Dialog

1-1-14. Click Finish.

Zynq 1-4

www.xilinx.com/university

xup@xilinx.com

© copyright 2017 Xilinx

& XILINX.

Lab Workbook Vivado HLS Design Flow Lab

You will see the created project in the Explorer view. Expand various sub-folders to see the
entries under each sub-folder.

[Explorer &3 = O
4 £ matrixmul.prj
» Y Includes
4| = Source
[matrixmul.cpp
4 = Test Bench
[& matrixmul_test.cpp
4 = solution1
4 % constraints
4 directives.tcl
& scripttcl

Figure 5. Explorer Window

1-1-15. Double-click on the matrixmul.cpp under the source folder to open its content in the information

pane.
o7 #include "matrixmul.h”

58

59 void matrixmul(

78 mat_a t a[MAT_A ROWS][MAT A COLS],

71 mat_b_t b[MAT B ROWS][MAT B _COLS],

72 result t res[MAT_A ROWS][MAT B _COLS])

734

74 f/ Iterate over the rows of the A matrix

75 Row: for(int i = @; i < MAT_A ROWS; i++) {

76 // Iterate over the columns of the B matrix

77 Col: for(int j = @; j < MAT_B_COLS; j++) {

78 // Do the inner product of a row of A and col of B
79 res[1i][3i] = @;

1] Product: for(int k = @; k < MAT_B ROWS; k++) {

B1 res[1][J] += a[i][k] * b[k][]];

B2 b

B3 b

B4 1}

85}

Figure 6. The Design under consideration

It can be seen that the design is a matrix multiplication implementation, consisting of three nested
loops. The Product loop is the inner most loop performing the actual Matrix elements product and
sum. The Col loop is the outer-loop which feeds the next column element data with the passed
row element data to the Product loop. Finally, Row is the outer-most loop. The res]i][j]=0 (line
79) resets the result every time a new row element is passed and new column element is used.

v Xilinx.com/universit Zyng 1-5
£ XILINX e /
© copyright 2017 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

Run C Simulation Step 2

2-1.

2-1-1.

2-1-2.

2-1-3.

Run C simulation to view the expected output.

Select Project > Run C Simulation or click on = from the tools bar buttons, and Click OK in
the C Simulation Dialog window.

The files will be compiled and you will see the output in the Console window.

Bl Console &2 @] Errors| & Warnings
Vivado HLS Console
ktarting C simulation ...
C:/Xilinx/Vivado/2017.4/bin/vivado_hls.bat C:/xup/hls/labs/labl/matrixmul.prj/solutionl/csim.tcl
INFO: [HLS 2@0-1@] Running 'C:/Xilinx/Vivado/2017.4/bin/unwrapped/win64.o/vivado_hls.exe’
IMFO: [HLS 280-10@] For user 'parimalp’ on host 'xsjparimalp31’ (Windows NT_amd64 version 6.1) on
INFO: [HLS 2@@-1@] In directory 'C:/xup/hls/labs/lab1l’
INFO: [HLS 2@80-1@] Opening project 'C:/xup/hls/labs/labl/matrixmul.prj’.
IMNFO: [HLS 280-10] Opening solution 'C:/xup/hls/labs/labl/matrixmul.prj/solutionl’.
INFO: [SYN 2@1-201] Setting up clock 'default’ with a period of 1@ns.
IMNFO: [HLS 280-10] Setting target device to 'xc7z020c1gd84-1"
INFO: [SIM 211-2] ¥k¥kwkkkskarsks CSIM stapt *Fwmcksrinionk
INFO: [SIM 211-4] CSIM will launch GCC as the compiler.
Compiling ../../../../matrixmul_test.cpp in debug mode
Compiling ../../../../matrixmul.cpp in debug mode
Generating csim.exe
{
{870,906,942}
{1086,1131,1176}
{1302,1356,1410}
¥
INFO: [SIM 211-1] CSim done with @ errors.
Finished C simulation.

Figure 7. Program output

Double-click on matrixmul_test.cpp under testbench folder in the Explorer to see the content.

You should see two input matrices initialized with some values and then the code that executes
the algorithm. If HW_COSIM is defined (as was done during the project set-up) then the
matrixmul function is called and compares the output of the computed result with the one returned
from the called function, and prints Test passed if the results match.

If HW_COSIM had not been defined then it will simply output the computed result and not call the
matrixmul function.

Run Debugger Step 3

3-1.

3-1-1.

Run the application in debugger mode and understand the behavior of the
program.

Select Project > Run C Simulation or click on - from the tools bar buttons. Select the Launch
Debugger option and click OK.

The application will be compiled with —g option to include the debugging information, the compiled
application will be invoked, and the debug perspective will be opened automatically.

Zyng 1-6 www.xilinx.com/university (' XI LINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

3-1-2. The Debug perspective will show the matrixmul_test.cpp in the source view, argc and argv
variables defined in the Variables view, Outline view showing the objects which are in the current
scope, thread created and the program suspended at the main() function entry point.

File Edit Project Solution Run Window Help
I ENREREIEIS B B REBia® - [35 Debug |1 | Synthesis 4 Analysis
45 Debug 22 . [i Explorer Bt | i = = O |[- Variables 52 . |9 Breakpoints| it Registers | € Expressions| m, Modules| S
4[] matrixmul.prj.Debug [C/C++ Application] 50| e -
a (B csim.exe [6420] o Tpé
4 ff Thread [1] 0 (Suspended : Breakpoint) | - . ‘
= main() at matrxmul test.cpp:77 0xd0139d porame i
5 gdb | oo argv char™ |
" g | o (= in_mat_a char [3][3] |
| o (® hw_result short [3][3] I
| o9 erent int |
| o (= inmath char [3]13] I
| b (= sw_result short [3][3] ||
< >
([matrixmul.cpp |) matrixmul_test.epp £ & ' Sl
L] ~ | o 5 @ -
using namespace std; v BERY #*
=l iostream
- int main(int arge, char **argv) o matrixmulh
" B sid
® main(int, char™): int

mat_a t in mat_a[3][3] = {
{11, 12, 13},
{14, 15, 18},
{17, 18 ,19}
¥:
mat b t in mat_b[3][3] = {
{21, 22, 23},
{24, 25, 26},
{27, 28, 29}
p i) ~

(B Console 32] Tasks| B Problems| Executables| [Memory| 1]
 matrixmul.prj.Debug [C/C++ Application] esim.exe

Writable Smart Insert | 80:20

Figure 8. A Debug perspective

3-1-3. Scroll-down in the source view, and double-click in the blue margin at line 105 where it is about to
output “{* in the output console window. This will set a break-point at line 105.

The breakpoint is marked with a blue circle, and a tick

24 £ Print result matr‘i;d
@c cout << "{" << end]l;

3-1-4. Similarly, set a breakpoint at line 101 on the matrixmul() function

3-1-5. Using the Step Over (F6) button (@) several times, observe the execution progress, and
observe the variable values updating, as well as computed software result.

v Xilinx.com/universit Zynq 1-7
£ XILINX e /
© copyright 2017 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

File Edit Project Solution Run Window Help

i NI RIFTID 2 B o B REBa® : |35 Debug |[# | Synthesis &> Analysis
45 Debug & [T Explorer| % ¥t i = = 0O (0o Variables 32\ % Breakpoints | i1 Registers | 7' Expressions | # Modules| = 0 |
a [matrixmul.prj.Debug [C/C++ Application] v <% E| ¢ 5 ‘ et =
®
4 2 csim.exe [4232] Name Type Value fa
4 P Thread [1] 0 (Suspended : Step) . :
= main) at matrixmul_test.cpp:95 0401402 e i
i b o argy char 4TS
e ok int 1
- int 0
i int 0
b (= in_mat_a char [3]13] Ox28fedf
> (% hw_result short [3]3] Ox28fect
9= err_cnt int 0 &
| [£] matrixmul.cpp | [€] matrixmul_test.cpp £2 = 0 |[8 outiine 52 = 8)
[FEERY e ¥ 7

= iostream
= matrixmulh

std

main(int, char™) : int

Iterat:
for(int i
for (int 3

// Iverat

° I

0: 3 < MAT_B_COLS; j++) {
ne ns of the B matrix

for (int k = 0; k < MAT B ROWS: k++) {

[sw result([i][j] += in mat a[i][k] * in mat blk][j];]

v

& Console F & Tasks| [Problems| (3 Executables| [] Memory| B R REE®E mBE-m-g = 8|
|t 1.prj.Debug [C/C+ Ay csim.exe ‘

3-1-6. Now click the Resume (¥) button or F8 to complete the software computation and stop at line
101.

| Witable | Smortinsert | 95:1

Figure 9. Debugger’s intermediate output view

3-1-7. Observe the following computed software result in the variables view.

(%)= Variables &3 . % Breakpointq iiti Registers | @) Modules} = 0
tE| &R K|t T
Mame Type Value &
4 bﬁ sw_result short [3][3] n28feb2
4 [= 5w _result[0] short[3] (h28feb2
(9= sw_result short a70
(=)= sw_result short G06
(9= sw_result short 042
a4 [= sw_result[1] short [3] O28febd
()= sw_result shaort 1086
()= sw_result chort 113
(9= sw_result short 1176
4 bﬁ sw_result[2] short [3] he28febe
(=)= sw_result short 1302
(9= sw_result short 1356
()= sw_result short 1410 v
< >
Hame : hw result o

Figure 10. Software computed result

3-1-8. Click on the Step Into (F5) button (-~) to traverse into the matrixmul module, the one that we
will synthesize, and observe that the execution is paused on line 75 of the module.

Zynq 1-8 www.xilinx.com/university i' XI LINX

xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

3-1-9. Using the Step Over (F6) several times, observe the computed results. Once satisfied, you can
use the Step Return (F7) button to return from the function.
3-1-10. The program execution will suspend at line 105 as we had set a breakpoint. Observe the
software and hardware (function) computed results in the Variables view.
(x)= Yariables 3% 9 Breakpoints | 01ii Registers| @) Modules = O
Tl R
Mame Type Value (]
4 (= hw_result[0] short [3] x28fecd
()= hw_resull short a70
()= hw_resull short 406
(9= hw_resull short 242
- = hw_result[1] short[3] x28feca
- (= hw_result[2] short[3] Ox28fed
(= err_cnt int]
. = in_mat_b char [3][3] x28fedt
4 [= sw_result short [3][3] Ox28feb2
4 = sw_result[0] short[3] Ox28feb2
()= sw_result short 270
()= sw_result short 1]
()= sw_result short 942
o~ nrai [v rm L T T 4
£ >
Figure 11. Computed results
3-1-11. Set a breakpoint on line 134 (return err_cnt;), and click on the Resume button.
The execution will continue until the breakpoint is encountered. The console window will show
the results as seen earlier (Figure 7).
3-1-12. Press the Resume button or Terminate button to finish the debugging session.
Synthesize the Design Step 4
4-1. Switch to Synthesis view and synthesize the design with the defaults. View
the synthesis results and answer the question listed in the detailed section
of this step.
4-1-1. Switch to the Synthesis view by clicking [* | 3YNthesis | 5 the tools bar.
4-1-2. Select Solution > Run C Synthesis > Active Solution or click onthe ¥ button to start the
synthesis process.
4-1-3. When synthesis is completed, the Synthesis Results will be displayed along with the Outline pane.

Using the Outline pane, one can navigate to any part of the report with a simple click.

(' XI LINX www.xilinx.com/university Zyng 1-9

Xup@xilinx.com
© copyright 2017 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

[g) matrixmul.cpp 2 matrixmul_test.cpp [0 Synthesis(solutionl) &2 Synthesis Repo;t for 'matrixmul’

Synthesis Report for 'matrixmul’ e
General Information

General Information Date: Sat Feb 24 07:33:18 2018
Date: Tue Feb 13 07:51:22 2018 Version: 20174 (Build 2086221 on Fri Dec 15 21:13:33 MST 2017)
Version: 20174 (Build 2086221 on Fri Dec 15 21:13:33 MST 2017) Project: matrixmul.prj
Project: matrixmul.prj Solution: solutionl
Solution: solutionl Product family: zyng
Product family: zynq Target device: xc7z010clg400-1

Target device: xc7z020clg484-1
Performance Estimates

Performance Estimates

= Timing (ns)
= Timing (ns)
= Summary
= Summary - -
Clock Target Estimated Uncertainty Klodk Target:) Estimated Uncertainty
apck 1000 870 135 apclk | 800 6.38 100
= Latency (clock cycles) = Latency (clock cycles)
= Summary -l Summary
Latency Interval Latency Interval
min max min max Type min max min max Type
79 79 79 79 none 106 106 106 106 none

Figure 12. Report view after synthesis is completed

4-1-4. If you expand solutionl in Explorer, several generated files including report files will become
accessible.

L5 Explorer &3
4| matrixmul.prj
> WY Includes
4 = Source
[g matrixmul.cpp
» = Test Bench
a = solution1
» # constraints
» = csim
» &= impl
4 (= syn
4 (= report
=l matrixmul_csynth.rpt
4 [= systemc
[g] matrixmul_mac_mulbkb.h
[g matrixmul.cpp
[g matrixmul.h
4 (= verilog
i matrixmul_mac_mulbkb.v
s matrixmul.v
4 = yhdl
sl matrixmul_mac_mulbkb.vhd
s matrixmul.vhd

Figure 13. Explorer view after the synthesis process

Note that when the syn folder under the Solutionl folder is expanded in the Explorer view, it will
show report, systemC, verilog, and vhdl sub-folders under which report files, and generated
source (vhdl, verilog, header, and cpp) files. By double-clicking any of these entries will open the
corresponding file in the information pane.

Also note that if the target design has hierarchical functions, reports corresponding to lower-level
functions are also created.

Zyng 1-10 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2017 Xilinx

Lab Workbook

Vivado HLS Design Flow Lab

4-1-5. The Synthesis Report shows the performance and resource estimates as well as estimated

latency in the design.

4-1-6. Using scroll bar on the right, scroll down into the report and answer the following question.

Question 1

Estimated clock period:

Worst case latency:
Number of DSP48E used:
Number of FFs used:

Number of LUTs used:

4-1-7. The report also shows the top-level interface signals generated by the tools.

Interface

ap_clk

ap_rst
ap_start
ap_done
ap_idle
ap_ready
a_address)
a_cel
a_gl
b_address)
b_cel
b_q0
res_address)
res_cel
res_wel)
res_dl

out

Bits

=B B (R (- N R R "= RO - NP RS (PR P (Y Y

Protocol
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_memory
ap_memory
ap_mermoery
ap_memory
ap_memory
ap_mermoery
ap_memory
ap_memory
ap_mermory

ap_rnemory

Source Object
matrixmul
matrizxmul
matrixmul
matrixmul
matrizxmul
matrizmul

a

[="]

=i = N = R - T]

res

res

res

res

Figure 14. Generated interface signals

C Type
return value
return value
return value
return value
return value
return value

array
array
array
array
array
array
array
array
array

array

You can see ap_clk, ap_rst and ap_ idle and ap_ready control signals are automatically added to
the design by default. These signals are used as handshaking signals to indicate when the
design is ready to begin the next computation command (ap_ready), when the next computation
is started (ap_start), and when the computation is completed (ap_done). Other signals are
generated based on the input and output signals in the design and their default or specified

interfaces.

Analyze using Analysis Perspective

Step 5

5-1. Switch to the Analysis Perspective and understand the design behavior.

5-1-1. Select Solution > Open Analysis Perspective or click on (

to open the analysis viewer.

%5 Debug [s | Synthesis |+ Analysis |)

& XILINX.

www.xilinx.com/university
Xup@xilinx.com

© copyright 2017 Xilinx

Zyng 1-11

Vivado HLS Design Flow Lab Lab Workbook

The Analysis perspective consists of 5 panes as shown below. Note that the module and loops
hierarchies are displayed unexpanded by default.

The Module Hierarchy pane shows both the performance and area information for the entire
design and can be used to navigate through the hierarchy. The Performance Profile pane is
visible and shows the performance details for this level of hierarchy. The information in these two
panes is similar to the information reviewed earlier in the synthesis report.

The Performance view is also shown in the right-hand side pane. This view shows how the
operations in this particular block are scheduled into clock cycles.

o The left-hand column lists the resources

0 The top row lists the control states (cO to c4 for ZedBoard and cO to c5 for Zybo) in the design.
Control states are the internal states used by High-Level Synthesis to schedule operations
into clock cycles. There is a close correlation between the control states and the final states
in the RTL Finite State Machine(FSM) but there is no one-to-one mapping

/. Vivado HLS 2017.4 - matrixmul.prj (CAxup\hls\labs\lab1\matrixmul.prj) ==l X
File Edit Project Solution Window Help
Bid-~ e @ © % Debug] Synthesis (&= Analysis
F = T 8 || [& matrixmul_test. =l Synthesis(solut = Performance(sol &2 =) = B8
BRAM DSP FF LUT Lat Ints | Pipeli
= SLoNCYs CMElva peline type Current Module : matrixmul
® matrixmul 0 1 44 184 79 80 none
| _operation\Control Sten | co | c1 | c2 | c3 | ca |
1i-...#Row \
£ Performance Profile &2 |- | Resource Profilel mE =8
Pipelined Latency Initiation Interval Iteration Latency Trip count
4 & matrixmul - 79 80 - -
| % ;
I [T Properties & “._& Warnings E»rEmt =06
Property Value
4 1 » 4 1 »

Figure 15. Analysis perspective

5-1-2. Click on '+’ of loop Row to expand, and then similarly click on sub-loops Col and Product to fully
expand the loop hierarchy.

Zyng 1-12 www.xilinx.com/university v
Xup@xilinx.com (‘ XILINX”
© copyright 2017 Xilinx

Lab Workbook

Vivado HLS Design Flow Lab

Current Module :

Oneration\Control Sten

matrixmul

co

C1

C2

C3

C4

N6 R0 NG R G O U O o N N
gyl s i e =y el AR Mo N, R R SR S R

23

-IROW
i(phi mux)
exitcond2 (icmp)
i 1(+)
tmp s (-)

SCol

J (phi mux)
exitcondl (icmp)
J 1(4)

tmp 2 (+)

SIProduct

res load(phi mux)
k(phi mux)
node 40 (write)
exitcond (icmp)
k 1(+)

tmp 4 (+)

tmp 11(-)

tmp 12 (+)

a load(read)

b load(read)
tmp 7 (*)

tmp 8(+)

Figure 16. Performance matrix showing top-level Row operation

From this we can see that in the first state (C1) of the Row the loop exit condition is checked and
there is an add operation performed. This addition is likely the counter to count the loop iterations,
and we can confirm this.

The operations resulting from the loops are colored yellow, the standard operations are colored
purple, and sub-blocks will be colored green (in our case we don't have any lower-level functions).

5-1-3. Select the purple block for the adder in state C1, right-click and select Goto Source.

The source code pane will be opened, highlighting line 75 where the Row loop index is being
tested and incremented. In the next state (C2) it starts to execute the Col loop.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com

© copyright 2017 Xilinx

Zyng 1-13

Vivado HLS Design Flow Lab

Lab Workbook

Current Module :

Oneration\Control Sten

matrixmul

c2 | c3

c4

1 EHRow

2 i(phi mux)

3 exitcond?2 (icmp)
i 1(+)

5 tmp s(-)

6 SICol

7 J (phi mux)

8 exitcondl (icmp)

9 J 1(+)

10 tmp 2 (+)

11 SIProduct

12 res load(phi mux)

13 k(phi mux)

14 node 40 (write)

15 exitcond (icmp)

16 k 1(+)

17 tmp 4 (+)

18 tmp 11 (-)

19 tmp 12 (+)

20 a load(read)

21 b load(read)

22 tmp 7 (*)

23 tmp 8 (+)

Performance Resource

[T Properties | & Warnings | [¢ C Source 3

File: Ch\xup\hls\labs\labl\matrixmul.cpp

734

74 /I lterate over the rows of the A matrix

75 Row: for(inti=0;i < MAT A ROWS; i++){
/I Iterate over the columns of the B matrix
Col: for(intj=0;) <« MAT_B_COLS; j++){

76
77
78
79
80
81
82
83
84 1

}

// Do the inner product of a row of A and col of B

res[i]li] = O;

Right-
/. Click here

Product: for(int k = 0; k <« MAT_B_ROWS; k++) {
res(i](i] += a[i](k] * bIK][];

}

Figure 17. Cross probing into the source file

5-1-4. Click on the C2-8 purple cell in the Col loop to see the source code highlighting (line 79) update.

5-1-5. Expand the Performance Profile hierarchy and note iteration latencies, Trip counts, and overall
latencies for each of the nested loops.

Zyng 1-14

www.xilinx.com/university

Xup@xilinx.com
© copyright 2017 Xilinx

& XILINX.

Lab Workbook

Vivado HLS Design Flow Lab

£F Performance Profile &2 . |

Pipelined
4ie matrixmul -
4 @ Row no
4 @ (Col no

@ Product no

Resource Profile

Latency Initiation Interval
79 80

78 -

24 -

G -

Figure 18. The Performance Profile output

7 B = B8

W W W

Iteration Latency Trip count

The number of iterations can also be noted by holding the mouse over the loop in the

Performance view (a dialog box shows the loop statistics).

11
12
13

15
16
17
18
19
20
21
22
23

SIProduct
res load(phi mux)
k(phi mux)
node 40 (write)
exitcond (icmp)
k 1(+)
tmp 4 (+)
tmp 11(-)
tmp 12 (+)
a load(read)
b load(read)
tmp 7 (*)
tmp 8 (+)

Figure 19. Loop information

Note that the initiation interval does not have a number as this loop is not pipelined.

I

Property
Pipelined:
Latency:
Initiation Interval:
Iteration Latency:
Trip count:

Value
no

o]

5-1-6. Click next to the matrixmul entry in the Module Hierarchy and observe that the entry is not
expanded, since there are no lower-level functions defined in the design.

5-1-7. Select the Resource Profile tab and observe various resources and where they have been used.
You can expand Expressions and Registers sections to see how the resources are being used by
which operations.
£F Performance Profile || . Resource Profile i3 =

BRAfvl FF LUT BitsPO Bits P1
4:® matrixmul; 0 44 184
- g2k [/O Ports(3) 32
T2 Instances(0) 0 0 0
B Memories(D) 0 0 0 0
: ¥, Expressions{11) 0 0 115 37 34
: s Registers(11) 44 47
Channels(0) 0 0 0 0
- Multiplexers(5) 0 0 69 23
Figure 20. The Resource Profile tab view
5-1-8.

In the Performance Matrix tab, select the Resource tab (at the bottom of the page), and expand

Expressions, I/0 Ports, and Memory Ports entries to view the type of operations, resources
used, and in which state they are being used.

& XILINX.

www.xilinx.com/university

Xup@xilinx.com

© copyright 2017 Xilinx

Zyng 1-15

Vivado HLS Design Flow Lab

Lab Workbook

Current Module : matrixmul

| Resource\Control Sten| co | ¢c1 | 2 | e3 | ca
1 EI/0 Ports
2 a(po) read
3 b(p0) read
4 res (p0) write
5 E=Memory Ports
6 res (p0) write
7 a(po) read
8 b (p0) read
Q EEXpressions
10 i phi fu 79 phi_mux
11 i1 fu 127 +
12 tmp s fu 149 -
13 exitcond2 fu 121 iemp
14 J phi fu 90 phi_mux
15 tmp 2 fu 171 =
16 J 1 fu 1lel =
17 exitcondl fu 155 icmp
18 res load phi fu... phi mux
19 k phi fu 114 phi_mux
20 k1 fu 187 +
21 tmp 12 fu 225 +
22 tmp 4 fu 197 +
23 tmp 11 fu 219 =
24 exitcond fu 181 iemp
25 grp fu 243 =

Figure 21. The Resource tab

5-1-9. Click on the Synthesis tool bar button to switch back to the Synthesis view.

Run C/RTL Co-simulation Step 6

6-1. Run the C/RTL Co-simulation with the default settings of VHDL. Verify that
the simulation passes.

6-1-1. Select Solution > Run C/RTL Cosimulation or if you are in the synthesis view, click on the
toolbar button to open the dialog box so the desired simulations can be selected and run.
A C/RTL Co-simulation Dialog box will open.

6-1-2. Make sure the VHDL option is selected.
This allows the simulation to be performed using VHDL. To perform the verification using Verilog,
you can select Verilog and choose the simulator from the drop-down menu or let the tools use the
first simulator that appears in the PATH variable.

Zyng 1-16 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

¢4 Co-simulation Dialog &J

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

Auto -

RTL Selection
() Verilog (@ VHDL

Options
[Setup Only

Dump Trace

["] Optimizing Compile

["] Reduce Diskspace

|
Compiled Library Location

Input Arguments

[] Do not show this dialog box again.

l oK] l Cancel

b

Figure 22. A C/RTL Co-simulation Dialog

6-1-3. Click OK to run the VHDL simulation.

The C/RTL Co-simulation will run, generating and compiling several files, and then simulating the
design. It goes through three stages.

o First, the VHDL test bench is executed to generate input stimuli for the RTL design

« Second, an RTL test bench with newly generated input stimuli is created and the RTL
simulation is then performed

. Finally, the output from the RTL is re-applied to the VHDL test bench to check the results

In the console window you can see the progress and also a message that the test is passed.
This eliminates writing a separate testbench for the synthesized design.

v www.xilinx.com/university Zyng 1-17
i‘ XI LINX” Xup@xilinx.com

© copyright 2017 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

Starting C/RTL cosimulation ...
C:/Xilinx/Vivado/2017.4/bin/vivado hls.bat C:/xup/hls/labs/labl/matrixmul.prj/solutionl/cosim.tcl
INFO: [HLS 280-18] Running 'C:/Xilinx/Vivado/2017.4/bin/unwrapped/winé4.o/vivado_hls.exe’
INFO: [HLS 200-18] For user 'parimalp' on host 'xsjparimalp31’ (Windows NT_ amd64 version 6.1) on ~
INFO: [HLS 28@-18] In directory 'C:/xup/hls/labs/labl’
INFO: [HLS 200-18] Opening project 'C:/xup/hls/labs/labl/matrixmul.prj’.
INFO: [HLS 200-1@] Opening solution 'C:/xup/hls/labs/labl/matrixmul.prj/solutionl’.
INFO: [SYN 2081-201] Setting up clock 'default' with a period of 10ns.
INFO: [HLS 200-10] Setting target device to 'xc7z020clgdg4-1'
INFO: [COSIM 212-47] Using XSIM for RTL simulation.
INFO: [COSIM 212-14] Instrumenting C test bench ...
Build using "C:/Xilinx/Vivado/2017.4/msys/bin/g++.exe"
Compiling apatb_matrixmul.cpp
Compiling matrixmul.cpp pre.cpp.tb.cpp
Compiling matrixmul_test.cpp_pre.cpp.tb.cpp
Generating cosim.tv.exe
INFO: [COSIM 212-3082] Starting C TB testing ...
{
{870,906,942}
{1086,1131,1176}
{1302,1356,1410}

}
Test passed.

wRRRER yoim v2017.4 (64-bit)
#%%% SW Build 2086221 on Fri Dec 15 28:55:39 MST 2017
#%#%% TP Build 2085800 on Fri Dec 15 22:25:07 MST 2017
** Copyright 1986-2017 Xilinx, Inc. All Rights Reserved.

source xsim.dir/matrixmul/xsim_script.tcl

xsim {matrixmul} -autoloadwcfg -tclbatch {matrixmul._tcl}

Vivado Simulator 2017.4

Time resolution is 1 ps

source matrixmul.tcl

run all

Note: simulation done!

Time: 975 ns Iteration: 1 Process: /fapatb_matrixmul_top/generate_sim_done_proc
Failure: MORMAL EXIT (note: failure is to force the simulator to stop)

Time: 975 ns Iteration: 1 Process: /fapatb_matrixmul_top/generate_sim_done_proc
$finish called at time : 975 ns

quit

INFO: [Common 17-286] Exiting xsim at Tue Feb 13 ©9:29:51 2018...

INFO: [CDSIM 212-316] Starting C post checking ...

{

{870,906,942}

{1086,1131,1176}

{1302,1356,1410}

¥

Test passed.

INFO: [COSIM 212-1808]1 *** C/RTL co-simulation finished: PASS **#*

INFO: [COSIM 212-211] II is measurable only when transaction number is greater th
Finished C/RTL cosimulation.

Figure 23. Console view showing simulation progress

6-1-4. Once the simulation verification is completed, the simulation report tab will open showing the
results. The report indicates if the simulation passed or failed. In addition, the report indicates the
measured latency and interval.

Zyng 1-18 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2017 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

Since we have selected only VHDL, the result shows the latencies and interval (initiation) which
indicates after how many clock cycles later the next input can be provided. Since the design is
not pipelined, it will be latency+1 clock cycles.

Cosimulation Report for ‘'matrixmul’ Cosimulation Report for ‘'matrixmul’
Result Result
Latency Interval Latency Interval
RTL Status min avg max min avg max RTL Status min avg max min avg max

VHDL Pass 79 79 79 NA NA NA VHDL Pass 106 106 106 NA NA NA
Verilog NA NA NA NA NA NA NA Verilog NA NA NA NA NA NA NA

(a) ZedBoard (b) ZYBO

Figure 24. Co-simulation results

Viewing Simulation Results in Vivado Step 7

7-1.

Run Verilog simulation with Dump Trace option selected.

7-1-1. Select Solution > Run C/RTL Co-simulation or click on the ¥ button in the Synthesis view to
open the dialog box so the desired simulations can be run.

7-1-2. Click on the Verilog RTL Selection option, leaving Verilog/VHDL Simulator Section option to Auto.
Optionally, you can click on the drop-down button and select the desired simulator from the
available list of XSim, 1Sim, ModelSim, and Riviera.

7-1-3. Select All for the Dump Trace option and click OK.

4 Co-simulation Dialog {ﬁJ
C/RTL Co-simulation .
Verilog/VHDL Simulator Selection
Auto b
RTL Selection
@ Verilog VHDL
Options
Setup Only
Dump Trace |all v
Figure 25. Setting up for Verilog simulation and dump trace
When RTL verification completes the co-simulation report automatically opens showing the
Verilog simulation has passed (and the measured latency and interval). In addition, because the
Dump Trace option was used and Verilog was selected, two trace files entries can be seen in the
Verilog simulation directory
3 www.xilinx.com/universit Zynq 1-19
& XILINX. / ynd

Xup@xilinx.com
© copyright 2017 Xilinx

Vivado HLS Design Flow Lab

Lab Workbook

4 = 5im

¢ = autowrap

> = report

> =t

4 = verilog
sl AESL automem_awv

sl AESL_automem_b.v
sl AESL automem_res.v

o

RTE

Y

RTL

d

m Z

; ﬁ |'|||'

|'|||' |'|||' |'|||' |'|||' |'|||' ﬁ |'|||'

check_sim.tcl

glblv

matrixmul_mac_mulbkb.v

matrixmul.autotb.v
matrixmul.performance.result.transaction.xml
matrixmul.prj

matrixmul.result.latrb

" matrixmul.tcl
& matrixmulv

matrixmul.wcfg
matrixmul.wdb
run_sim.tcl
run_xsim.bat
sim.bat
xelab.log
xelab.pb
Xsim.jou
¥xsim.log

» (= xsim.dir

Figure 26. Explorer view after the Verilog RTL co-simulation run

The Co-simulation report shows the test was passed for Verilog along with latency and Interval

results.

Cosimulation Report for ‘'matrixmul’

Result

RTL
VHDL
Verilog

(a) ZedBoard

Result
Latency Interval
Status min avg max min avg max RTL Status
NA 79 79 79 NA NA NA VHDL NA

Pass 79 79 79 NA NA NA Verilog Pass

Figure 27. Cosimulation report

7-2. Analyze the dumped traces.

7-2-1. Click on the (2) button to open the wave viewer.

(b) ZYBO

This will start Vivado 2017.4 and open the wave viewer.

Cosimulation Report for ‘'matrixmul’

Latency Interval
min avg max min avg max
106 106 106 MNA NA NA
106 106 106 MNA NA NA

Zyng 1-20

www.xilinx.com/university

Xup@xilinx.com

© copyright 2017 Xilinx

& XILINX.

Lab Workbook Vivado HLS Design Flow Lab

7-2-2. In the waveform window, expand the Design Top Signals as needed.
7-2-3. Click on the zoom fit tool button (“) to see the entire simulation of one iteration.
7-2-4. Select a_address0 in the waveform window, right-click and select Radix > Unsigned Decimal.
Similarly, do the same for b_address0 and res_address0 signals.
7-2-5. Similarly, set the a_g0, b_q0, and res_dO0 radix to Signed Decimal.
You should see the output similar to shown below.
E matrixmulwcfg® x e [A
=W CInputs
B W b(memory)
B W Block-leval 10 Ha
n ap_start
® ap_done 0 L
» ap_idle 0
ready 0 il |
B
B W Clock [
& ap.ck MAARAAARARATRAARATALN
B3 ™ Test Bench Signals
Figure 28. Full waveform showing iteration worth simulation
Note that as soon as ap_start is asserted, ap_idle has been de-asserted indicating that the
design is in computation mode. The ap_idle signal remains de-asserted until ap_done is
asserted, indicating completion of the process. This indicates 79 clock cycles latency.
7-2-6. Using the Zoom In button, view area of ~160 ns and ~550 ns.
~ W CInput
~ W b{memory)
> ® b_qo[7:0]
Figure 29. Zoomed view
3 www.xilinx.com/universit Zynq 1-21
& XILINX. y yna

Xup@xilinx.com
© copyright 2017 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

Observe that the design expects element data by providing a_address0, a_ceo, b_address0,
b_ceo signals and outputs result using res_dO0, res_we0, and res_ce0.

7-2-7. View various part of the simulation and try to understand how the design works.

7-2-8. When done, close Vivado by selecting File > Exit. Click OK if prompted, and then Discard to
close the program without saving.

Export RTL and Implement Step 8

8-1. In Vivado HLS, export the design, selecting VHDL as a language, and run
the implementation by selecting Evaluate option.

8-1-1. In Vivado-HLS, select Solution > Export RTL or click on the & button to open the dialog box so

the desired implementation can be run.

An Export RTL Dialog box will open.
4 Export RTL tﬁj

Export RTL as IP

B

Format Selection

‘IP Catalog v| ‘ Configuration...

Evaluate Generated RTL

‘Verilog v|
Vivado RTL Synthesis

Place and Route

Do not show this dialog box again.

l OK] | Cancel

Figure 30. A Export RTL Dialog box

With default settings (shown above), the IP packaging process will run and create a package for
the Vivado IP Catalog. Another option available from the Format Selection drop-down menu, is to
create System Generator for DSP.

8-1-2. Click on the drop-down menu of the Evaluate Generated RTL field and select VHDL.

8-1-3. Click on the Vivado synthesis, place and route check box to run the implementation tool.

Zyng 1-22 www.xilinx.com/university (' XI LINX

Xup@xilinx.com
© copyright 2017 Xilinx

Lab Workbook

8-1-4.

4 Export RTL &J

Export RTL as IP

Format Selection

[IP Catalog vl [Conﬁguration...

Evaluate Generated RTL
VHDL v|

[Vivado synthesis
[¥] Vivado synthesis, place and route

|| Do not show this dialog box again.

l OK] l Cancel

K ¥ - -

Figure 31. Selecting Evaluate options

Click OK and the implementation run will begin.

You can observe the progress in the Vivado HLS Console window. It goes through several
phases:
0 Exporting RTL as an IP in the IP-XACT format
0 RTL evaluation, since we selected Evaluate option
0 Goes through Synthesis
0 Goes through Placement and Routing

Starting export RTL ...

C:/Xilinx/Vivado/2017.4/bin/vivado_hls.bat C:/xup/hls/labs/labl/matrixmul.prj/solutionl/export.tcl
INFO: [HLS 2080-10] Running 'C:/Xilinx/Vivado/2017.4/bin/unwrapped/winé4.o/vivado_hls.exe’

INFO: [HLS 200-10] For user 'parimalp’ on host 'xsjparimalp31l’ (Windows NT_amd64 version 6.1) on T
INFO: [HLS 200-10] In directory 'C:/xup/hls/labs/labl’

INFO: [HLS 2@0-10] Opening project 'C:/xup/hls/labs/labl/matrixmul.prj’.

INFO: [HLS 200-10] Opening solution 'C:/xup/hls/labs/labl/matrixmul.prj/solutionl’.
INFO: [SYN 201-201] Setting up clock 'default' with a period of 1@ns.

INFO: [HLS 200-10] Setting target device to 'xc7z020clgdg84-1'

INFO: [IMPL 213-81 Exporting RTL as a Vivado IP.

FRkEEX Vivado v2017.4 (64-bit)
**%* Sl Build 2086221 on Fri Dec 15 28:55:39 MST 2017
***¥* TP Build 2085800 on Fri Dec 15 22:25:07 MST 2017
** Copyright 1986-2017 Xilinx, Inc. All Rights Reserved.

source matrixmul.tcl -notrace

Command: synth_design -top matrixmul -part xc7z020clgd84-1 -no_iobuf -mode out_of_context
Starting synth_design

Attempting to get a license for feature 'Synthesis' and/or device 'xc7z020'

TNFO: [Common 17-349] Got license for feature 'Synthesis' and/or device 'xc7z020°

INFO: Launching helper process for spawning children vivado processes

Vivado HLS Design Flow Lab

TNFO: Helper process launched with PTID 5748

INFO: [Synth 8-638] synthesizing module 'matrixmul' [C:/xup/hls/labs/labl/matrixmul.prj/solutionl/impl/vhdl/matrixmul_vhd:33]

TNFO: [Synth 8-5534] Detected attribute (* fsm_encoding =
INFO: [Synth 8-5534] Detected attribute (* fsm_encoding =

"none" *) [C:/xup/hls/labs/labl/matrixmul.prj/solutionl/impl/vhdl/m
“"none" *) [C:/xup/hls/labs/labl/matrixmul.prj/solutionl/impl/vhdl/m

& XILINX.

www.xilinx.com/university
Xup@xilinx.com

Zyng 1-23

© copyright 2017 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

Implementation tool: Xilinx Vivado v.2017.4

Project: matrixmul.prj
Solution: solutionl

Device target: xCc7z020clegd84-1

Report date: Tue Feb 13 10:29:28 -0800 2018
#=== Post-Implementation Resource usage ===
SLICE: 19

LUT: 34

FF: 27

DSP: 1

BRAM:]

SRL: @

#=== Final timing ===

CP required: 10.000

CP achieved post-synthesis: 3.0819

CP achieved post-implementation: 3.728

Timing met
INFO: [Common 17-206] Exiting Vivado at Tue Feb 13 10:29:28 2018...
Finished export RTL.

Figure 32. Console view

When the run is completed the implementation report will be displayed in the information pane.

Export Report for ‘matrixmul’ Export Report for ‘'matrixmul’

General Information General Information

Report date: Tue Feb 13 10:29:28 -0800 2018 Report date: Sat Feb 24 07:57:50 -0800 2018
Project: matrixmul.prj Project: matrixmul.pr]

Solution: solutionl Solution: solutionl

Device target: %c7z020clg484-1 Device target: %#c7z010clg400-1
Implementation tool: Xilinx Vivado v2017.4 Implementation tool: Xilinx Vivado v.2017.4

Resource Usage Resource Usage

VHDL VHDL
SLICE 10 SLICE 10
LUT 34 LUT 33
FF 27 FF 28
Dsp 1 DsP 1
BRAM 0 BRAM 0
SRL 0 SRL
Final Timing Final Timing
VHDL VHDL
CP required 10.000 CP required 8.000
CP achieved post-synthesis 3.019 CP achieved post-synthesis 3.019
CP achieved post-implementation 3.728 CP achieved post-implementation 3.884
(a) ZedBoard (b) ZYBO

Figure 33. Implementation results in Vivado HLS (Zedboard and Zybo)

Observe that the timing constraint was met, the achieved period (3.728 [ZedBoard], 3.884 [Zybo]
ns), and the type and amount of resources used.

Zyng 1-24 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2017 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

8-1-5. Collapse the Explorer view and observe that impl folder is created under which ip, report, Verilog,
and vhdl sub-folders are created.

L Explorer &3
4 % matrixmul.prj

» [Includes

> = Source

: = Test Bench

a = solutiont
- 4 constraints
= csim
= impl
+ = sim
s = syn

Figure 34. Explorer view after the RTL Export run

8-1-6. Expand the Verilog and vhdl sub-folders and observe that the Verilog sub-folder only has the rtl
file whereas the vhdl sub-folder has several files and sub-folders as the synthesis and
implementation runs were made for it.

It includes project.xpr file (the Vivado project file), matrixmul.xdc file (timing constraint file),
project.runs folder (which includes synth_1 and impl_1 sub-folders created by the synthesis and
implementation runs) among others.

v Xilinx.com/universit Zyng 1-25
£ XILINX e /
© copyright 2017 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

4 Y= solution1
: 4 constraints
= csim
4 = impl
> = ip
> [misc
» = report
4 = verilog

s matrixmul_mac_mulbkb.v

ai matrixmul.y
4 (= yhdl

autoimpl.log
extraction.tcl

& m

impl.bat
matrixmul_mac_mulbkb.vhd

[

E]
2
="

matrixmul.result.rb

[

E]
2
="

matrixmul.vhd

matrixmul.xdc

[

projectxpr

run_vivado.tcl
settings.icl

©® 2|m

vivado,jou
vivado.log

[

i

» (= project.cache

: (= project.hw
= project.ip_user_files

4 (= project.runs

> = impl_1
= synth_1
4 = report

=l matrixmul_timing_routed.rpt
£l matrixmul_timing_synth.rpt
=l matrixmul_utilization_routed.rpt

£l matrixmul_utilization_synth.rpt
= sim_tbs

Figure 35. The implementation directory

8-1-7. Expand the ip folder and observe the IP packaged as a zip file
(xilinx_com_hls_matrixmul_1_0.zip), ready for adding to the Vivado IP catalog.

Zyng 1-26 www.xilinx.com/university v
xup@xilinx.com iA XI LINX@

© copyright 2017 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

4 Y= solution1
- 4 constraints
: = csim
4 = impl
4 (= 1p
|5l autoimpl.log
= auxiliary.xmil
|=l componentxml
=| pack.bat
" run_ippack.icl

=| vivado.jou

I

vivado.log
= wilinx_com_hls_matrixmul_1_0.zip

constraints
bd

doc

- example
hdl

misc

(VT VT T VT R VT

- subcore
» = xgui

» = report

+ = verilog

» (= vhdl

Figure 36. The ip folder content

8-1-8. Close Vivado HLS by selecting File > Exit.

Conclusion

In this lab, you completed the major steps of the high-level synthesis design flow using Vivado HLS. You
created a project, adding source files, synthesized the design, simulated the design, and implemented the
design. You also learned how to use the Analysis capability to understand the scheduling and binding.

Answers

1. Answer the following questions:

Estimated clock period: 8.70 ns (zedboard) 6.38 ns (zybo)
Worst case latency: 79 clock cycles (zedboard) 106 clock cycles (zybo)
Number of DSP48E used: 1
Number of FFs used: 44 (zedboard) 61 (zybo)
Number of LUTs used: 184 (zedboard) 189(zybo)
(: XILINXQ Www.xilinx.c_qm/university Zynq 1-27
Xup@xilinx.com

© copyright 2017 Xilinx

