Lab Workbook Improving Performance Lab

Improving Performance Lab

Introduction

This lab introduces various techniques and directives which can be used in Vivado HLS to improve
design performance. The design under consideration accepts an image in a (custom) RGB format,
converts it to the Y'UV color space, applies a filter to the Y’UV image and converts it back to RGB.

Objectives

After completing this lab, you will be able to:

e Add directives in your design

e Understand the effect of INLINE directive

e Improve performance using PIPELINE directive

e Distinguish between DATAFLOW directive and Configuration Command functionality
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 6 primary steps: You will create a new project using Vivado HLS command prompt,
analyze the created project and generated solution, turn off inlining and apply the TRIPCOUNT,
PIPELINE, and DATAFLOW directives and command configuration, and finally export and implement the
design.

General Flow for this Lab

Step 1:

Create a
Project

=

Step 2:

Analyze
Project and
Results

Step 3:

:> Apply
TRIPCOUNT

Directive

Step 4:

Apply
PIPELINE
Directive

Step 5:

Apply
DATAFLOW
Directive

using CLI

Step 6:

Export &
Implement
the Design

www.xilinx.com/university
Xup@xilinx.com
© Copyright 2017 Xilinx

Zynq 2-1

& XILINX.

Lab Workbook Improving Performance Lab

Create a Vivado HLS Project from Command Line Step 1

1-1.

Validate your design using Vivado HLS command line window. Create a
new Vivado HLS project from the command line.

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2017.4 >
Vivado HLS > Vivado HLS 2017.4 Command Prompt.

1-1-2. Inthe Vivado HLS Command Prompt, change directory to c:\xup\hls\labs\lab2.

1-1-3. A self-checking program (yuv_filter_test.c) is provided. Using that we can validate the design. A
Makefile is also provided. Using the Makefile, the necessary source files can be compiled and
the compiled program can be executed. You can examine the contents of these files and the
project directory. In the Vivado HLS Command Prompt, type make to compile and execute the
program.

@M Vivado HLS 2017.4 Command Prompt ST
ivado HLS Command Prompt
vailable commands:
ivado_hls,apcc,gcc, g+, make
Copyright (c¢) 2009 Microsoft Corporation. All rights reserved.
C:\Xilinx\Uivado\2017.4>cd c:\xup\hls\labs\lab2
c:\xup\hls\labs\lab2>make
gce -ggdb -w -I/¢c/Xilinx/Uivado/2017.4/include -c¢ -o yuv_filter.o yuu_filter.c|
gce -lm yuu_filter.o yuv_filter_test.o image_aux.o -o yuv_filter
./yuv _filter
[Test passed!
c:\xup\hls\labs\lab2>
Figure 1. Validating the design
Note that the source files (yuv_filter.c, yuv_filter_test.c, and image_aux.c) were compiled, then
yuv_filter executable program was created, and then it was executed. The program tests the
design and outputs Test Passed message.

1-1-4. A Vivado HLS tcl script file (yuv_filter.tcl) is provided and can be used to create a Vivado HLS
project.

1-1-5. Type vivado_hls —f zed_yuv_filter.tcl in the Vivado HLS Command Prompt window to create
the project targeting the ZedBoard or type vivado_hls —f zybo_yuv_filter.tcl in the Vivado HLS
Command Prompt window to create the project targeting the Zybo.

The project will be created and Vivado HLS.log file will be generated.
v www.xilinx.com/university Zynq 2-2

(‘ X”—INX Xup@xilinx.com

© Copyright 2017 Xilinx

Lab Workbook

Improving Performance Lab

1-1-6. Open the vivado_hls.log file from c:\xup\hls\labs\lab2 using any text editor and observe the
following sections:

o0 Creating

directory and project called yuv_filter.prj within it, adding design files to the project,

setting solution name as solutionl, setting target device (Zyng-z020 for ZedBoard or Zyng-
z010 for Zybo), setting desired clock period of 10 ns (for ZedBoard) or 8 ns (for Zybo), and
importing the design and testbench files (Figure 2).

0 Synthesizing (Generating) the design which involves scheduling and binding of each
functions and sub-function (Figure 3).

0 Generating RTL of each function and sub-function in SystemC, Verilog, and VHDL languages
(Figure 4).

LRSS &8
LS & 3
wR KK

&K

o e ST) T N S A

source
INFO:
INFO:
10 INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

I Ve w's]

[T S ; =k ¥ ;
; [T Vs TN = = JEESS B SO BV S S I

) ko

]
= Lo b

5]

Vivado (TM) HLS - High-Level Synthesis from C, C++ and SystemC v2017.4 (64-bit)
SW Build 2086221 on Fri Dec 15 20:55:39 MST 2017

IP Build 2085800 on Fri Dec 15 22:25:07 MST 2017

Copyricght 1986-2017 %ilinx, Inc. A1l Rights Reserved.

C:/¥ilinx/Vivade/2017.4/scripts/vivado hls/hls.tel -nokrace

[HLS 200-10] Running 'C:/¥ilinx/¥Vivadn/2017.4/bin/unwrapped/winéd.o/vivado hls.gxe’
[HLS 200-10] For user 'parimalp' on host 'xsjparimalp3l' (Windows NT amdé4 version 6.1)
[HLS 200-10] In directory 'C:/xup/hls/labs/lab2’

[HLS 200-10] Creating and opening project 'C:/gup/hls/labs/lab2/yuv filter.prl'.

[HLS 200-10] Adding design file 'yuv filter.c' to the project

[HLS 200-10] Adding test bench file 'image aux.c' to the project

[HLS 200-10] Adding test bench file 'yuv filter test.c' to the project

[HLS 200-10] Adding test bench file 'test data' to the project

[HLS 200-10] Creating and opening solution 'C:/xup/hls/labs/lab2/yuv filter.prj/solutio
[HLS 200-10] Cleaning up the solution database.

[HLS 200-10] Setting target device to 'xc7z020clgd4B4-1"

[SYN 201-201] Setting up clock 'default' with a period of 1l0ns.

[HLS 200-10] Znalyzing design file 'yuv filter.c'

[HLS 200-10] validating synthesis directives

[HLS 200-111] Finished Checking Pragmas Time (s): gpu = 00:00:01 ; elapsed = 00:00:09 .
[HLS 200-111] Finished Linking Time (s): gpu = 00:00:01 ; elapsed = 00:00:12 . Memory (I
[HLS 200-10] Starting code transformations ...

Figure 2. Creating project and setting up parameters

& XILINX.

www.xilinx.com/university Zynqg 2-3
Xup@xilinx.com
© Copyright 2017 Xilinx

Lab Workbook Improving Performance Lab

5+
-1 o LR e

[T LS T)

M~

=D 0o

A W Do

[
S8]

o I LR 5 (Y S S T O

T w0 I 0 A I O) [y
oW o

INFO: [HLS 200-10] Starting code transformations
INFO: [HLS 200-111] Finished Standard Transforms Time (s): gpu = 00:00:01 ; el
INFO: [HLS 200-10] Checking synthesizability ...
INFO: [HLS 200-111] Finished cChecking Synthesizability Time (s): gpu = 00:00:0
INFO: [XFORM 203-602] Inlining function 'yuv scale' into 'yuv filter' (yuv fil
INFO: [XFORM 203-401] Performing if-conversion on hyperblogk from (yuv_filter.
INFO: [XFORM 203-11] Balancing expressicons in function 'rgb2yuv' (yuv_filter.c
INFO: [HLS 200-111] Finished Pre-synthesis Time (s): gpu = 00:00:02 ; elapsed
INFO: [HLS 200-111] Finished Architecture Synthesis Time (s): gpu = 00:00:02 ;
INFO: [HLS 200-10] Starting hardware synthesis
INFO: [HLS 200-10] Synthesizing 'yuv_filter'
INfo: [HLS 200-10] ~——7-"—"-"7-"""7"7"T"T"T"T"T""""""""""—————
INFO: [HLS 200-42] -- Implementing module 'rgb2yuv'
INFO: [HLS 200-10] ~—"———7F-""""T"""T™"""""""""""""""" """
INFO: [SCHED 204-11] Starting scheduling ...
WRARNING: [SCHED 204-21] Estimated clock period (10.283ns) exceeds the target (
WRARNING: [SCHED 204-21] The critical path consists of the following:

'mul' operation ('tmp 25', yuv filter.c:537) (3.36 ng)

'add' operation ('tmp3', yuv filter.c:57) (3.02 png3s)

'add' operation ('tmp 26', yuv filter.c:57) (3.9 ns)
INFO: [SCHED 204-11] Finished scheduling.
INFO: [HLS 200-111] Elapsed time: 15.045 seconds; current allocated memory: 9
INFO: |[BIND 205-100] Starting micro-architecture generation
INFO: |[BIND 205-101] Performing variable lifetime analysis.
INFO: |[BIND 205-101] Exploring resource sharing.
INFO: |[BIND 205-101] Binding
INFO: |[BIND 205-100] Finished micro-architecture generation.
INFO: [HLS 200-111] Elapsed time: 0.105 seconds; current allocated memory: 95
INFO: [HLS 200-10] - —-—"—1—-"————-————
INFO: [HLS 200-42] -- Implementing module 'vuwv2rgb'
INro¢: [HLS 200-10] ~——7F-"""7"""T"7"T"T"T"T""""""""""""————
INFO: [SCHED 204-11] Starting scheduling ...
WRARNING: [SCHED 204-21] Estimated clock period (10.8454ns) exceeds the target
WARNING: [SCHED 204-21] The critical path consists of the following:

'mul' operation ('tmp 12', wyuv filter.c:101) (3.36 ngs)

'add' operation ('tmpl', yuv filter.c:101) (3.02 ps)

'add' operation ('tmp 14', yuv filter.c:101) (2.14 ng)

'icmp' operation ('icmp®', yuv filter.c:101) (0.959 ng3)

'select' operation ('p phitmp2', yuv filter.c:101) (0 ns)

'select' operation ('G', yuv filter.c:101) (1.37 ps)
INFO: [SCHED 204-11] Finished scheduling.

Figure 3. Synthesizing (Generating) the design

129

INFO: [RTGEN 206-100] Finished creating RTL model for 'yuv_filter'.

INFO: [HLS 200-111] Elapsed time: 0.623 seconds; current allocated memory: S8.680 MB.
INFC: [RTMG 210-278] Implementing memory 'yuv filter p yuv hbi ram (RAM)' using block RAM
INFO: [HLS 200-111] Finished generating all RTL models Time (s): gpu = 00:00:04 ; elapsec
INFO: | [S¥YSC 207-301] Generating SystemC RTL for yuv filter.

INFO: | [VHDL 208-304] Generating VHDL RTL for yuv_filter.
INFO: | [VLOG 209-307] Generating Verilog RTL for yuv filter.
INFO: [HLS 200-112]1 Total elapsed time: 21.239 seconds; peak allocated memory: 98.680 MB.
INFO: [Common 17-206] Exiting vivado _hls at Tue Feb 13 19:33:43 2018...

Figure 4. Generating RTL

1-1-7. Open the created project (in GUI mode) from the Vivado HLS Command Prompt window, by
typing vivado_hls —p yuv_filter.prj.
The Vivado HLS will open in GUI mode and the project will be opened.
i' XILINX www.xilinx.com/university Zyng 2-4
- e Xup@xilinx.com

© Copyright 2017 Xilinx

Lab Workbook Improving Performance Lab

Analyze the Created Project and Results Step 2

2-1. Open the source file and note that three functions are used. Look at the
results and observe that the latencies are undefined (represented by ?).

2-1-1. InVivado HLS GUI, expand the source folder in the Explorer view and double-click yuv_filter.c
to view the content.

0 The design is implemented in 3 functions: rgb2yuv, yuv_scale and yuv2rgb.

o0 Each of these filter functions iterates over the entire source image (which has maximum
dimensions specified in image_aux. h), requiring a single source pixel to produce a pixel in
the result image.

0 The scale function simply applies individual scale factors, supplied as top-level arguments to
the Y’UV components.

o0 Notice that most of the variables are of user-defined (typedef) and aggregate (e.g. structure,
array) types.

0 Also notice that the original source used malloc () to dynamically allocate storage for the
internal image buffers. While appropriate for such large data structures in software, malloc()
is not synthesizable and is not supported by Vivado HLS.

0 A viable workaround is conditionally compiled into the code, leveraging the __ SYNTHESIS
macro. Vivado HLS automatically defines the _ SYNTHESIS _ macro when reading any code.
This ensure the original malloc() code is used outside of synthesis but Vivado HLS will use
the workaround when synthesizing.

2-1-2. Expand the syn > report folder in the Explorer view and double-click yuv_filter_csynh.rpt entry
to open the synthesis report.

2-1-3. Each of the loops in this design has variable bounds — the width and height are defined by
members of input type image_t. When variables bounds are present on loops the total latency of
the loops cannot be determined: this impacts the ability to perform analysis using reports. Hence,
“?" is reported for various latencies.

-1 Latency (clock cycles)
- Summary

Latency Interval
min max min max Type
? ? ? 7 none

Figure 5. Latency computation

Apply TRIPCOUNT Pragma Step 3

3-1. Open the source file and uncomment pragma lines, re-synthesize, and
observe the resources used as well as estimated latencies. Answer the
guestions listed in the detailed section of this step.

3-1-1. To assist in providing loop-latency estimates, Vivado HLS provides a TRIPCOUNT directive
which allows limits on the variables bounds to be specified by the user. In this design, such
directives have been embedded in the source code, in the form of #pragma statements.

v Xilinx.com/universit Zynq 2-5
£ XILINX e /
© Copyright 2017 Xilinx

Lab Workbook Improving Performance Lab

3-1-2. Uncomment the #pragma lines (50, 53, 90, 93, 130, 133) to define the loop bounds and save the
file.

3-1-3. Synthesize the design by selecting Solution > Run C Synthesis > Active Solution. View the
synthesis report when the process is completed.

-1 Latency (clock cycles)

-1 Latency (clock cycles)
= Summary = Summary
Latency Interval Latency Interval
min max min max Type min max min max Type
841205 51621125 841205 51621125 none 1001205 61451525 1001205 61451525 none
(a) ZedBoard (b) Zybo

Figure 6. Latency computation after applying TRIPCOUNT pragma

3-1-4. Looking at the report, and answer the following question.

Question 1

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of BRAMSs used:

Number of FFs used:
Number of LUTs used:

3-1-5. Scroll the Console window and note that yuv_scale function is automatically inline into the
yuv_filter function.
INFO: [HLS 200-10] Checking synthesizability ...

INFO: [HLS 200-111] Finished Checking Synthesizability Time (s): cpu = 00:00:01 ; elapsed = 00:00:11 . Memory (MB): peak = 104.156 ; gain = 47.289
INFO: [XFORM 263-682]1 Inlining function ‘vuv scale’ into 'yuv filter' (yuv filter.c:24) automatically.

INFO: [XFORM 283-4@1] Performing if-conversion on hyperblock from (vuv filter.c:92:33) to (yuv filter.c:92:27) in function 'yuv2rgb'... converting 7 basic blocks.

INFO: [XFORM 283-11] Balancing expressions in function 'rgb2yuv' (yuv filter.c:3@)...11 expression(s) balanced.
INFO: [HLS 200-111] Finished Pre-synthesis Time (s): cpu = 00:00:01 ; elapsed = 00:00:12 . Memory (MB): peak = 125.930 ; gain = 69.063

Figure 7. Vivado HLS automatically inlining function

3-1-6. Observe that there are three entries — rgb2yuv.rpt, yuv_filter.rpt, and yuv2rgb.rpt under the syn
report folder in the Explorer view. There is no entry for yuv_scale.rpt since the function was
inlined into the yuv_filter function.

You can access lower level module’s report by either traversing down in the top-level report under
components (under Utilization Estimates > Details > Component) or from the reports container in
the project explorer.

3-1-7. Expand the Summary of loop latency and note the latency and trip count numbers for the
yuv_scale function. Note that the YUV_SCALE_LOOP_Y loop latency is 6X the specified
TRIPCOUNT, implying that 6 cycles are used for each of the iteration of the loop.

v www.xilinx.com/university Zynq 2-6
(‘ XI LINX” Xup@xilinx.com

© Copyright 2017 Xilinx

Lab Workbook Improving Performance Lab
- Latency (clock cycles)
= Summary
Latency Interval
min max min max Type
841205 51621125 841205 51621125 none
= Detail
Instance
= Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined
-YUV_SCALE_LOOP_X 240400 14749440 1202 ~ 7682 - - 200 ~ 1920 no
+ YUV_SCALE_LOOP_Y 1200 7680 6 - - 200 ~ 1280 no
(a) ZedBoard
-l Latency (clock cycles)
= Summary
Latency Interval
min max min max Type
961205 58993925 961206 58993926 none
= Detail
+ Instance
- Loop
Latency Initiation Interval
Loop Name min max Iteration Latency ~ achieved target Trip Count Pipelined
- YUV_SCALE_LOOP_X 280400 17207040 1402 ~ 8962 - - 200 ~ 1920 no
+ YUV_SCALE_LOOP_Y 1400 8960 7 - - 200 ~ 1280 no

(b) Zybo
Figure 8. Loop latency

3-1-8. You can verify this by opening an analysis perspective view, expanding the

YUV_SCALE_LOOP_X entry, and then expanding the YUV_SCALE_LOOP_Y entry.

Current Module

: vuv filter

c2 |l cal cal cs 1 ce |

c7 | c8

| Operation\Control Sten| co | c1 |
1 in width read(read)
2 in height read(r...
3 | rgb2yuv(function)
4 V scale read(read)
5 U scale read(read)
6 Y scale read(read)
7 BEYUV SCALE LOOP X
8 ¥ 1i(phi mux)
9 exitcondl i(icmp)
10 X (+)
11 tmp 2 (+)
12 BEYUV SCALE LOOP Y
13 ¥ 1(phi mux)
14 exitcond i(icmp)
15 ¥(+)
16 tmp 3 (+)
17 Y (read)
18 U(read)
19 V(read)
20 tmp 7 1i(*)
21 tmp i(*)
22 tmp 8 i(*)
23 node 89 (write)
24 node 91 (write)
25 node 93 (write)
26 vyuv2rgb (function)
27 node 102 (write)
28 node 104 (write)

Figure 9. Design analysis view of the YUV_SCALE_LOOP_Y loop

www.xilinx.com/university
Xup@xilinx.com
© Copyright 2017 Xilinx

Zynq 2-7

& XILINX.

Lab Workbook Improving Performance Lab

3-1-9. Inthe report tab, expand Detail > Instance section of the Utilization Estimates and click on the
grp_rgb2yuv_fu_244 (rgh2yuv) entry to open the report.

3-1-10. Answer the following question pertaining to rgbh2yuv function.

Question 2

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of FFs used:

Number of LUTs used:

3-1-11. Similarly, open the yuv2rgb report.

3-1-12. Answer the following question pertaining to yuv2rgb function.

Question 3

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of FFs used:

Number of LUTs used:

3-1-13. For the rgb2yuv function, in case of ZedBoard, the worst case latency is reported as 17207041
clock cycles. The reported latency can be estimated as follows.

0 RGB2YUV_LOOP_Y total loop latency = 7 x 1280 = 8960 cycles

1 entry and 1 exit clock for loop RGB2YUV_LOOP_Y = 8962 cycles
RGB2YUV_LOOP_X loop body latency = 10242 cycles
RGB2YUV_LOOP_X total loop latency = 8962 x 1920 =17207040 cycles
1 exit clock for the loop = 17207041 cycle

O O O ©o

3-1-14. For the rgb2yuv function, in case of ZYBO, the worst case latency is reported as 2212241 clock
cycles. The reported latency can be estimated as follows.

0 RGB2YUV_LOOP_Y total loop latency =9 x 1280 = 11520 cycles

1 entry and 1 exit clock for loop RGB2YUV_LOOP_Y = 11522 cycles
RGB2YUV_LOOP_X loop body latency = 11522 cycles
RGB2YUV_LOOP_X total loop latency = 11522 x 1920 =2212240 cycles
1 exit clock for the loop = 2212241 cycles

O O O o

v www.xilinx.com/university Zynqg 2-8
i‘ XI LINXJ Xup@xilinx.com

© Copyright 2017 Xilinx

Lab Workbook Improving Performance Lab

Turn OFF INLINE and Apply PIPELINE Directive Step 4

4-1. Create a new solution by copying the previous solution settings. Prevent
the automatic INLINE and apply PIPELINE directive. Generate the solution
and understand the output.

4-1-1. Select Project > New Solution or click on (ta) from the tools bar buttons.

4-1-2. A Solution Configuration dialog box will appear. Note that the check boxes of Copy existing
directives from solution and Copy custom constraints directives from solution are checked with
Solutionl selected. Click the Finish button to create a new solution with the default settings.

’n Solution Wizard =) &\ 4 Solution Wizard u@é]
Solution Configuration — Solution Configuration Ty
Create Vivado HLS solution for selected technology Create Vivado HLS solution for selected technology
Solution Name: folution2 Solution Name: olution2
Clock Clock
Period: 10 Uncertainty: eead ° WSS
Part Selection el cios N
part: XCT2020ckp484-1 D part: xc72070clgd00-1 u
Options TJED”S directives and constraints fi jution: solution]
| Copy directives and constraints from solution: solutionl + OPY CIECHIVES an consiraints from scution:
Finish] | Cancel ‘ Finish] ‘ Cancel
(a) ZedBoard (b) Zybo
Figure 10. Creating a new Solution after copying the existing solution

4-1-3. Make sure that the yuv_filter.c source is opened and visible in the information pane, and click on
the Directive tab.

4-1-4. Select function yuv_scale in the directives pane, right-click on it and select Insert Directive...

4-1-5. Click on the drop-down button of the Directive field. A pop-up menu shows up listing various
directives. Select INLINE directive.

4-1-6. Inthe Vivado HLS Directive Editor dialog box, click on the off option to turn OFF the automatic

inlining. Make sure that the Directive File is selected as destination. Click OK.

www.xilinx.com/university
Xup@xilinx.com
© Copyright 2017 Xilinx

Zynq 2-9

& XILINX.

Lab Workbook Improving Performance Lab

/| Vivado HLS Directive Editor o

Directive

INLINE -

Destination
Source File
@) Directive File

Options

region (optional):
recursive (optional}:

off (optional): v

Help ‘ | Cancel ‘ l OK

(5

Figure 11. Turning OFF the inlining function

0 When an object (function or loop) is pipelined, all the loops below it, down through the
hierarchy, will be automatically unrolled.

o0 Inorder for a loop to be unrolled it must have fixed bounds: all the loops in this design have
variable bounds, defined by an input argument variable to the top-level function.

0 Note that the TRIPCOUNT directive on the loops only influences reporting, it does not set
bounds for synthesis.

0 Neither the top-level function nor any of the sub-functions are pipelined in this example.

0 The pipeline directive must be applied to the inner-most loop in each function — the inner-
most loops have no variable-bounded loops inside of them which are required to be unrolled
and the outer loop will simply keep the inner loop fed with data

4-1-7. Expand the yuv_scale in the Directives tab, right-click on YUV_SCALE_LOOP_Y object and
select insert directives ..., and select PIPELINE as the directive.

4-1-8. Leave Il (Initiation Interval) blank as Vivado HLS will try for an lI=1, one new input every clock
cycle.

4-1-9. Click OK.

4-1-10. Similarly, apply the PIPELINE directive to YUV2RGB_LOOP_Y and RGB2YUV_LOOP_Y objects.
At this point, the Directive tab should look like as follows.

v www.xilinx.com/university Zyng 2-10
(‘ XI LINX” Xup@xilinx.com

© Copyright 2017 Xilinx

Lab Workbook Improving Performance Lab

4 @ rgb2yuv
O x
Oy

L P
*[1 Wrgb
4 %' RGB2YUV_LOOP_X
HLS loop_tripcount min=200 max=1920
4 ' RGB2YUV_LOOP_Y
% HLS PIPELINE
HLS loop_tripcount min=200 max=1280

4 @ yuv2rgb
O x

onBiend® w. J' gud . 0

OE
1 Wyuv
4 %' YUV2RGB_LOOP_X
HLS loop_tripcount min=200 max=1920
4 %" YUV2RGB_LOOP_Y
% HLS PIPELINE
HLS loop_tripcount min=200 max=1280

4 @ yuv_scale
% HLS INLINE off
© x

*Mw‘

® vn
4 %' YUV_SCALE_LOOP_X
HLS loop_tripcount min=200 max=1920
4 %' YUV_SCALE_LOOP_Y
% HLS PIPELINE
HLS loop_tripcount min=200 max=1280

Figure 12. PIPELINE directive applied

4-1-11. Click on the Synthesis button.

4-1-12. When the synthesis is completed, select Project > Compare Reports... or click on 5 to
compare the two solutions.

4-1-13. Select Solutionl and Solution2 from the Available Reports, and click on the Add>> button.

4-1-14. Observe that the latency reduced from 51621125 to 7372828 (ZedBoard), and 61451525 to
7372835 (ZYBO) clock cycles.

Xilinx.com/universit Zynq 2-11
£ XILINX e &
© Copyright 2017 Xilinx

Lab Workbook Improving Performance Lab

R — All Compared Solutions

solution2: xc7z020clg484-1 solution2; xc7z010clg400-1

solution: xc7z020clg484-1 solutionl: xc7z010clg400-1

Performance Estimates Performance Estimates

= Timing (ns) = Timing (ns)
Clock solution2 solutionl Clock solution? solutionl
ap_clk Target 10.00 10.00 ap_clk Target 8.00 8.00
Estimated 10.85 10.85 Estimated 9.63 871
- Latency (clock cycles) = Latency (clock cycles)
solution2 solutionl solution2 solutionl
Latency min 120028 841205 Latency min 120035 1001205
max /372828 51621125 max 7372835 61451525
Interval min 120028 841205 Interval min 120035 1001205
max /372828 51621125 max 7372835 61451525
(a) ZedBoard (b) Zybo

Figure 13. Performance comparison after pipelining

In Solutionl1, the total loop latency of the inner-most loop was loop_body_latency x loop iteration
count, whereas in Solution2 the new total loop latency of the inner-most loop is
loop_body_latency + loop iteration count.

4-1-15. Scroll down in the comparison report to view the resources utilization. Observe that the FFs,
LUTs, and DSP48E utilization increased whereas BRAM remained same.

Utilization Estimates Utilization Estimates
solution2 solutionl solution2 solutionl
BRAM_18K 12288 12288 BRAM_ 18K 12288 12288
DSP48E 9 6 DSP48E g 6
FF 1297 688 FF 1593 785
LUT 2051 1482 LUT 2083 1494
(a) ZedBoard (b) Zybo

Figure 14. Resources utilization after pipelining

Apply DATAFLOW Directive and Configuration Command Step 5

5-1. Create a new solution by copying the previous solution (Solution2) settings.
Apply DATAFLOW directive. Generate the solution and understand the
output.

5-1-1. Select Project > New Solution or click on (te) from the tools bar buttons.

5-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solution2
selected).

v www.xilinx.com/university Zynq 2-12
i‘ XI LINX” Xup@xilinx.com

© Copyright 2017 Xilinx

Lab Workbook Improving Performance Lab

5-1-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

5-1-4. Make sure that the yuv_filter.c source is opened in the information pane and select the Directive
tab.

5-1-5. Select function yuv_filter in the directives pane, right-click on it and select Insert Directive...

5-1-6. A pop-up menu shows up listing various directives. Select DATAFLOW directive and click OK.

5-1-7. Click on the Synthesis button.

5-1-8. When the synthesis is completed, the synthesis report is automatically opened.

5-1-9. Observe additional information, Dataflow Type, in the Performance Estimates section is
mentioned.

Performance Estimates Performance Estimates

= Timing (ns) -1 Timing (ns)
= Summary = Summary
Clock Target Estimated Uncertainty Clock Target Estimated Uncertainty
ap_clk 10.00 11.02 1.25 ap_clk 8.00 9.63 1.00
-1 Latency (clock cycles) -1 Latency (clock cycles)
= Summary = Summary
Latency Interval Latency Interval
min max min max Type min max min max Type
120025 7372825 40009 2457609 120031 7372831 40011 2457611

(a) ZedBoard (b) Zybo

Figure 15. Performance estimate after DATAFLOW directive applied

0 The Dataflow pipeline throughput indicates the number of clocks cycles between each set of
inputs reads. If this throughput value is less than the design latency it indicates the design
can start processing new inputs before the currents input data are output.

o While the overall latencies haven’t changed significantly, the dataflow throughput is showing
that the design can achieve close to the theoretical limit (1920x1280 = 2457600) of
processing one pixel every clock cycle.

5-1-10. Scrolling down into the Utilization Estimates, observe that the number of BRAMSs required has
doubled. This is due to the default dataflow ping-pong buffering.
3 www.xilinx.com/universit Zynq 2-13
& XILINX. / ynd

Xup@xilinx.com
© Copyright 2017 Xilinx

Lab Workbook

Improving Performance Lab

5-1-11.

5-2.

5-2-1.

5-2-2.

5-2-3.

Utilization Estimates

- Summary
Name

DsP
Expression
FIFO
Instance
Memory
Multiplexer
Reqister
Total
Available
Utilization (%)

(a) ZedBoard

BRAM_18K

Utilization Estimates

- Summary
DSPASE FF LuT Name BRAM_18K
DSP
0 200 Expression
35 172 FIFO 0
1 1188 1834 Instance o
96 0 Memaory 12288
a0 Multiplexer
10 - Reqister
11 1329 2296 Total 12288
220 106400 53200 Awvailable 120
5 1 4 Utilization (%) 10240
(b) Zybo

Figure 16. Resource estimate with DATAFLOW directive applied

DSP48E

11
80
13

FF LUT

0 200

35 172

1426 1834

96 0

- 90
10

1567 2296

35200 17600

4 13

o0 When DATAFLOW optimization is performed, memory buffers are automatically inserted
between the functions to ensure the next function can begin operation before the previous
function has finished. The default memory buffers are ping-pong buffers sized to fully
accommodate the largest producer or consumer array.

0 Vivado HLS allows the memory buffers to be the default ping-pong buffers or FIFOs. Since
this design has data accesses which are fully sequential, FIFOs can be used. Another
advantage to using FIFOs is that the size of the FIFOs can be directly controlled (not possible
in ping-pong buffers where random accesses are allowed).

The memory buffers type can be selected using Vivado HLS Configuration command.

Apply Dataflow configuration command, generate the solution, and
observe the improved resources utilization.

Select Solution > Solution Settings... or click on “ to access the configuration command

settings.

In the Configuration Settings dialog box, select General and click the Add... button.

Select config_dataflow as the command using the drop-down button and fifo as the
default_channel. Enter 2 as the fifo_depth. Click OK.

Add Command

Command:

config_dataflow

Parameters

default_channel fifo

fifo_depth 2

Figure 17. Selecting Dataflow configuration command and FIFO as buffer

Cancel

& XILINX.

www.xilinx.com/university

Xup@xilinx.com

© Copyright 2017 Xilinx

Zynq 2-14

Lab Workbook Improving Performance Lab

5-2-4. Click OK again.

5-2-5. Click on the Synthesis button.

5-2-6. When the synthesis is completed, the synthesis report is automatically opened.

5-2-7. Note that the performance parameter has not changed; however, resource estimates show that
the design is not using any BRAM and other resources (FF, LUT) usage has also reduced.
Utilization Estimates Utilization Estimates

= Summary = Summary

Name BRAM_18K DSP4SE FF LuUT Name BRAM_18K DSP48E FF LuT

DSP - - - - DsP - - -
Expression - - 0 8 Expression - - 0 8
FIFO 0 - 65 292 FIFO 0 - 65 292
Instance 0 11 855 1786 Instance 0 11 1116 1818
Memory - - Memory - - - .
Multiplexer - - Multiplexer - - -
Register - - - - Register - - -
Total 0 11 920 2086 Total 0 11 1181 2118
Available 280 220 106400 53200 Available 120 80 35200 17600
Utilization (%) 0 5 ~0 3 Utilization (%) 0 13 3 12

(a) ZedBoard (b) Zybo

Figure 18. Resource estimation after Dataflow configuration command

Export and Implement the Design in Vivado HLS Step 6

6-1. In Vivado HLS, export the design, selecting VHDL as a language, and run
the implementation by selecting Evaluate option.

6-1-1. In Vivado HLS, select Solution > Export RTL or click on the & button to open the dialog box so
the desired implementation can be run.

An Export RTL Dialog box will open.

6-1-2. Click on the drop-down button of the Evaluate Generated RTL field and select VHDL as the
language and click on the Vivado synthesis, place and route check box underneath.

6-1-3. Click OK and the implementation run will begin. You can observe the progress in the Vivado HLS
Console window. When the run is completed the implementation report will be displayed in the
information pane.

v www.xilinx.com/university Zynqg 2-15

(‘ X”—INXQ Xup@xilinx.com

© Copyright 2017 Xilinx

Lab Workbook

Improving Performance Lab

Export Report for 'yuv_filter'

General Information

Report date:

Project:

Solution:

Device target:

Wed Feb 14 07:41:30 -0800 2018

yuv_filter.prj
solution3
xc7z020clg484-1

Implementation toaol: Xilinx Vivado v.2017.4

Resource Usage

VHDL
SLICE 315
LUT 782
FF 700
DSP 11
BRAM 0
SRL 68
Final Timing
CP required

CP achieved post-synthesis

CP achieved post-implementation 9.227

[[iming met]

(a) ZedBoard

VHDL
10.000
8918

Export Report for 'yuv filter'

General Information

Report date:

Project:
Solution:

Device target:

Sat Feb 24 08:37:33 -0800 2018
yuv_filter.prj

solutiond

xc7z010clg400-1

Implementation tool: Xilinx Vivado v.2017.4

Resource Usage

VHDL
SLICE 340
LUT 772
FF 826
DSP 11
BRAM 0
SRL 69
Final Timing
VHDL
CP required 8.000
CP achieved post-synthesis 7.158

CP achieved post-implementation | 7.099

[Fmin mer]

(b) Zybo
Figure 19. Implementation results in Vivado HLS

Note that the implementation was successful in case of ZedBoard but failed in case of Zybo.

6-1-4. Close Vivado HLS by selecting File > EXxit.

Conclusion

In this lab, you learned that even though this design could not be pipelined at the top-level, a strategy of
pipelining the individual loops and then using dataflow optimization to make the functions operate in
parallel was able to achieve the same high throughput, processing one pixel per clock. When
DATAFLOW directive is applied, the default memory buffers (of ping-pong type) are automatically
inserted between the functions. Using the fact that the design used only sequential (streaming) data
accesses allowed the costly memory buffers associated with dataflow optimization to be replaced with

simple 2 element FIFOs using the Dataflow command configuration.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© Copyright 2017 Xilinx

Zyng 2-16

Lab Workbook

Improving Performance Lab

Answers

1. Answer the following questions for yuv_filter:

Estimated clock period:

10.85 ns (ZedBoard) 8.71 ns (Zybo)

Worst case latency:

51621125 (ZedBoard) 61451525 (Zybo) clock cycles

Number of DSP48E used:

6

Number of BRAMs used:

12288

Number of FFs used:

688 (ZedBoard) 785 (Zybo)

Number of LUTs used:

1482 (ZedBoard) 1494 (Zybo)

2. Answer the following questions rgb2yuv:

Estimated clock period:

10.28 ns (ZedBoard) 6.42 ns (Zybo)

Worst case latency:

17207041 (ZedBoard) 22122241 (Zybo) clock cycles

Number of DSP48E used:

3

Number of FFs used:

203 (ZedBoard) 249 (Zybo)

Number of LUTs used:

514 (ZedBoard) 520 (Zybo)

3. Answer the following questions for yuv2rgb:

Estimated clock period:

10.85 ns (ZedBoard) 8.71 ns (Zybo)

Worst case latency:

19664641 (ZedBoard) 22122241 (Zybo) clock cycles

Number of DSP48E used:

3

Number of FFs used:

195 (ZedBoard) 221 (Zybo)

Number of LUTs used:

438 (ZedBoard) 441 (Zybo)

v www.xilinx.com/university Zynq 2-17
(‘ XI LINXQ Xup@xilinx.com

© Copyright 2017 Xilinx

