
Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-1
xup@xilinx.com

© Copyright 2017 Xilinx

Improving Performance Lab

Introduction

This lab introduces various techniques and directives which can be used in Vivado HLS to improve
design performance. The design under consideration accepts an image in a (custom) RGB format,
converts it to the Y’UV color space, applies a filter to the Y’UV image and converts it back to RGB.

Objectives

After completing this lab, you will be able to:

 Add directives in your design
 Understand the effect of INLINE directive
 Improve performance using PIPELINE directive
 Distinguish between DATAFLOW directive and Configuration Command functionality

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 6 primary steps: You will create a new project using Vivado HLS command prompt,
analyze the created project and generated solution, turn off inlining and apply the TRIPCOUNT,
PIPELINE, and DATAFLOW directives and command configuration, and finally export and implement the
design.

General Flow for this Lab

Step 1:

Create a
Project

using CLI

Step 2:

Analyze
Project and

Results

Step 3:

Apply
TRIPCOUNT

Directive

Step 4:

Apply
PIPELINE
Directive

Step 5:

Apply
DATAFLOW

Directive

Step 6:

Export &
Implement
the Design

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-2
xup@xilinx.com

© Copyright 2017 Xilinx

Create a Vivado HLS Project from Command Line Step 1

1-1. Validate your design using Vivado HLS command line window. Create a
new Vivado HLS project from the command line.

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2017.4 >
Vivado HLS > Vivado HLS 2017.4 Command Prompt.

1-1-2. In the Vivado HLS Command Prompt, change directory to c:\xup\hls\labs\lab2.

1-1-3. A self-checking program (yuv_filter_test.c) is provided. Using that we can validate the design. A
Makefile is also provided. Using the Makefile, the necessary source files can be compiled and
the compiled program can be executed. You can examine the contents of these files and the
project directory. In the Vivado HLS Command Prompt, type make to compile and execute the
program.

Figure 1. Validating the design

Note that the source files (yuv_filter.c, yuv_filter_test.c, and image_aux.c) were compiled, then
yuv_filter executable program was created, and then it was executed. The program tests the
design and outputs Test Passed message.

1-1-4. A Vivado HLS tcl script file (yuv_filter.tcl) is provided and can be used to create a Vivado HLS
project.

1-1-5. Type vivado_hls –f zed_yuv_filter.tcl in the Vivado HLS Command Prompt window to create
the project targeting the ZedBoard or type vivado_hls –f zybo_yuv_filter.tcl in the Vivado HLS
Command Prompt window to create the project targeting the Zybo.

The project will be created and Vivado HLS.log file will be generated.

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-3
xup@xilinx.com

© Copyright 2017 Xilinx

1-1-6. Open the vivado_hls.log file from c:\xup\hls\labs\lab2 using any text editor and observe the
following sections:

o Creating directory and project called yuv_filter.prj within it, adding design files to the project,
setting solution name as solution1, setting target device (Zynq-z020 for ZedBoard or Zynq-
z010 for Zybo), setting desired clock period of 10 ns (for ZedBoard) or 8 ns (for Zybo), and
importing the design and testbench files (Figure 2).

o Synthesizing (Generating) the design which involves scheduling and binding of each
functions and sub-function (Figure 3).

o Generating RTL of each function and sub-function in SystemC, Verilog, and VHDL languages
(Figure 4).

Figure 2. Creating project and setting up parameters

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-4
xup@xilinx.com

© Copyright 2017 Xilinx

Figure 3. Synthesizing (Generating) the design

Figure 4. Generating RTL

1-1-7. Open the created project (in GUI mode) from the Vivado HLS Command Prompt window, by
typing vivado_hls –p yuv_filter.prj.

The Vivado HLS will open in GUI mode and the project will be opened.

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-5
xup@xilinx.com

© Copyright 2017 Xilinx

Analyze the Created Project and Results Step 2

2-1. Open the source file and note that three functions are used. Look at the
results and observe that the latencies are undefined (represented by ?).

2-1-1. In Vivado HLS GUI, expand the source folder in the Explorer view and double-click yuv_filter.c
to view the content.

o The design is implemented in 3 functions: rgb2yuv, yuv_scale and yuv2rgb.

o Each of these filter functions iterates over the entire source image (which has maximum
dimensions specified in image_aux.h), requiring a single source pixel to produce a pixel in
the result image.

o The scale function simply applies individual scale factors, supplied as top-level arguments to
the Y’UV components.

o Notice that most of the variables are of user-defined (typedef) and aggregate (e.g. structure,
array) types.

o Also notice that the original source used malloc() to dynamically allocate storage for the
internal image buffers. While appropriate for such large data structures in software, malloc()
is not synthesizable and is not supported by Vivado HLS.

o A viable workaround is conditionally compiled into the code, leveraging the __SYNTHESIS__
macro. Vivado HLS automatically defines the __SYNTHESIS__ macro when reading any code.
This ensure the original malloc() code is used outside of synthesis but Vivado HLS will use
the workaround when synthesizing.

2-1-2. Expand the syn > report folder in the Explorer view and double-click yuv_filter_csynh.rpt entry
to open the synthesis report.

2-1-3. Each of the loops in this design has variable bounds – the width and height are defined by
members of input type image_t. When variables bounds are present on loops the total latency of
the loops cannot be determined: this impacts the ability to perform analysis using reports. Hence,
“?” is reported for various latencies.

Figure 5. Latency computation

Apply TRIPCOUNT Pragma Step 3

3-1. Open the source file and uncomment pragma lines, re-synthesize, and
observe the resources used as well as estimated latencies. Answer the
questions listed in the detailed section of this step.

3-1-1. To assist in providing loop-latency estimates, Vivado HLS provides a TRIPCOUNT directive
which allows limits on the variables bounds to be specified by the user. In this design, such
directives have been embedded in the source code, in the form of #pragma statements.

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-6
xup@xilinx.com

© Copyright 2017 Xilinx

3-1-2. Uncomment the #pragma lines (50, 53, 90, 93, 130, 133) to define the loop bounds and save the
file.

3-1-3. Synthesize the design by selecting Solution > Run C Synthesis > Active Solution. View the
synthesis report when the process is completed.

(a) ZedBoard (b) Zybo

Figure 6. Latency computation after applying TRIPCOUNT pragma

3-1-4. Looking at the report, and answer the following question.

Question 1

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of BRAMs used:

Number of FFs used:

Number of LUTs used:

3-1-5. Scroll the Console window and note that yuv_scale function is automatically inline into the
yuv_filter function.

Figure 7. Vivado HLS automatically inlining function

3-1-6. Observe that there are three entries – rgb2yuv.rpt, yuv_filter.rpt, and yuv2rgb.rpt under the syn
report folder in the Explorer view. There is no entry for yuv_scale.rpt since the function was
inlined into the yuv_filter function.

You can access lower level module’s report by either traversing down in the top-level report under
components (under Utilization Estimates > Details > Component) or from the reports container in
the project explorer.

3-1-7. Expand the Summary of loop latency and note the latency and trip count numbers for the
yuv_scale function. Note that the YUV_SCALE_LOOP_Y loop latency is 6X the specified
TRIPCOUNT, implying that 6 cycles are used for each of the iteration of the loop.

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-7
xup@xilinx.com

© Copyright 2017 Xilinx

(a) ZedBoard

(b) Zybo

Figure 8. Loop latency

3-1-8. You can verify this by opening an analysis perspective view, expanding the
YUV_SCALE_LOOP_X entry, and then expanding the YUV_SCALE_LOOP_Y entry.

Figure 9. Design analysis view of the YUV_SCALE_LOOP_Y loop

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-8
xup@xilinx.com

© Copyright 2017 Xilinx

3-1-9. In the report tab, expand Detail > Instance section of the Utilization Estimates and click on the
grp_rgb2yuv_fu_244 (rgb2yuv) entry to open the report.

3-1-10. Answer the following question pertaining to rgb2yuv function.

Question 2

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of FFs used:

Number of LUTs used:

3-1-11. Similarly, open the yuv2rgb report.

3-1-12. Answer the following question pertaining to yuv2rgb function.

Question 3

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of FFs used:

Number of LUTs used:

3-1-13. For the rgb2yuv function, in case of ZedBoard, the worst case latency is reported as 17207041
clock cycles. The reported latency can be estimated as follows.

o RGB2YUV_LOOP_Y total loop latency = 7 x 1280 = 8960 cycles

o 1 entry and 1 exit clock for loop RGB2YUV_LOOP_Y = 8962 cycles

o RGB2YUV_LOOP_X loop body latency = 10242 cycles

o RGB2YUV_LOOP_X total loop latency = 8962 x 1920 =17207040 cycles

o 1 exit clock for the loop = 17207041 cycle

3-1-14. For the rgb2yuv function, in case of ZYBO, the worst case latency is reported as 2212241 clock
cycles. The reported latency can be estimated as follows.

o RGB2YUV_LOOP_Y total loop latency = 9 x 1280 = 11520 cycles

o 1 entry and 1 exit clock for loop RGB2YUV_LOOP_Y = 11522 cycles

o RGB2YUV_LOOP_X loop body latency = 11522 cycles

o RGB2YUV_LOOP_X total loop latency = 11522 x 1920 =2212240 cycles

o 1 exit clock for the loop = 2212241 cycles

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-9
xup@xilinx.com

© Copyright 2017 Xilinx

Turn OFF INLINE and Apply PIPELINE Directive Step 4

4-1. Create a new solution by copying the previous solution settings. Prevent
the automatic INLINE and apply PIPELINE directive. Generate the solution
and understand the output.

4-1-1. Select Project > New Solution or click on () from the tools bar buttons.

4-1-2. A Solution Configuration dialog box will appear. Note that the check boxes of Copy existing
directives from solution and Copy custom constraints directives from solution are checked with
Solution1 selected. Click the Finish button to create a new solution with the default settings.

(a) ZedBoard (b) Zybo

Figure 10. Creating a new Solution after copying the existing solution

4-1-3. Make sure that the yuv_filter.c source is opened and visible in the information pane, and click on
the Directive tab.

4-1-4. Select function yuv_scale in the directives pane, right-click on it and select Insert Directive...

4-1-5. Click on the drop-down button of the Directive field. A pop-up menu shows up listing various
directives. Select INLINE directive.

4-1-6. In the Vivado HLS Directive Editor dialog box, click on the off option to turn OFF the automatic
inlining. Make sure that the Directive File is selected as destination. Click OK.

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-10
xup@xilinx.com

© Copyright 2017 Xilinx

Figure 11. Turning OFF the inlining function

o When an object (function or loop) is pipelined, all the loops below it, down through the
hierarchy, will be automatically unrolled.

o In order for a loop to be unrolled it must have fixed bounds: all the loops in this design have
variable bounds, defined by an input argument variable to the top-level function.

o Note that the TRIPCOUNT directive on the loops only influences reporting, it does not set
bounds for synthesis.

o Neither the top-level function nor any of the sub-functions are pipelined in this example.

o The pipeline directive must be applied to the inner-most loop in each function – the inner-
most loops have no variable-bounded loops inside of them which are required to be unrolled
and the outer loop will simply keep the inner loop fed with data

4-1-7. Expand the yuv_scale in the Directives tab, right-click on YUV_SCALE_LOOP_Y object and
select insert directives …, and select PIPELINE as the directive.

4-1-8. Leave II (Initiation Interval) blank as Vivado HLS will try for an II=1, one new input every clock
cycle.

4-1-9. Click OK.

4-1-10. Similarly, apply the PIPELINE directive to YUV2RGB_LOOP_Y and RGB2YUV_LOOP_Y objects.
At this point, the Directive tab should look like as follows.

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-11
xup@xilinx.com

© Copyright 2017 Xilinx

Figure 12. PIPELINE directive applied

4-1-11. Click on the Synthesis button.

4-1-12. When the synthesis is completed, select Project > Compare Reports… or click on to
compare the two solutions.

4-1-13. Select Solution1 and Solution2 from the Available Reports, and click on the Add>> button.

4-1-14. Observe that the latency reduced from 51621125 to 7372828 (ZedBoard), and 61451525 to
7372835 (ZYBO) clock cycles.

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-12
xup@xilinx.com

© Copyright 2017 Xilinx

(a) ZedBoard (b) Zybo

Figure 13. Performance comparison after pipelining

In Solution1, the total loop latency of the inner-most loop was loop_body_latency x loop iteration
count, whereas in Solution2 the new total loop latency of the inner-most loop is
loop_body_latency + loop iteration count.

4-1-15. Scroll down in the comparison report to view the resources utilization. Observe that the FFs,
LUTs, and DSP48E utilization increased whereas BRAM remained same.

(a) ZedBoard (b) Zybo

Figure 14. Resources utilization after pipelining

Apply DATAFLOW Directive and Configuration Command Step 5

5-1. Create a new solution by copying the previous solution (Solution2) settings.
Apply DATAFLOW directive. Generate the solution and understand the
output.

5-1-1. Select Project > New Solution or click on () from the tools bar buttons.

5-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solution2
selected).

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-13
xup@xilinx.com

© Copyright 2017 Xilinx

5-1-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

5-1-4. Make sure that the yuv_filter.c source is opened in the information pane and select the Directive
tab.

5-1-5. Select function yuv_filter in the directives pane, right-click on it and select Insert Directive...

5-1-6. A pop-up menu shows up listing various directives. Select DATAFLOW directive and click OK.

5-1-7. Click on the Synthesis button.

5-1-8. When the synthesis is completed, the synthesis report is automatically opened.

5-1-9. Observe additional information, Dataflow Type, in the Performance Estimates section is
mentioned.

(a) ZedBoard (b) Zybo

Figure 15. Performance estimate after DATAFLOW directive applied

o The Dataflow pipeline throughput indicates the number of clocks cycles between each set of
inputs reads. If this throughput value is less than the design latency it indicates the design
can start processing new inputs before the currents input data are output.

o While the overall latencies haven’t changed significantly, the dataflow throughput is showing
that the design can achieve close to the theoretical limit (1920x1280 = 2457600) of
processing one pixel every clock cycle.

5-1-10. Scrolling down into the Utilization Estimates, observe that the number of BRAMs required has
doubled. This is due to the default dataflow ping-pong buffering.

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-14
xup@xilinx.com

© Copyright 2017 Xilinx

(a) ZedBoard (b) Zybo

Figure 16. Resource estimate with DATAFLOW directive applied

o When DATAFLOW optimization is performed, memory buffers are automatically inserted
between the functions to ensure the next function can begin operation before the previous
function has finished. The default memory buffers are ping-pong buffers sized to fully
accommodate the largest producer or consumer array.

o Vivado HLS allows the memory buffers to be the default ping-pong buffers or FIFOs. Since
this design has data accesses which are fully sequential, FIFOs can be used. Another
advantage to using FIFOs is that the size of the FIFOs can be directly controlled (not possible
in ping-pong buffers where random accesses are allowed).

5-1-11. The memory buffers type can be selected using Vivado HLS Configuration command.

5-2. Apply Dataflow configuration command, generate the solution, and
observe the improved resources utilization.

5-2-1. Select Solution > Solution Settings… or click on to access the configuration command
settings.

5-2-2. In the Configuration Settings dialog box, select General and click the Add… button.

5-2-3. Select config_dataflow as the command using the drop-down button and fifo as the
default_channel. Enter 2 as the fifo_depth. Click OK.

Figure 17. Selecting Dataflow configuration command and FIFO as buffer

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-15
xup@xilinx.com

© Copyright 2017 Xilinx

5-2-4. Click OK again.

5-2-5. Click on the Synthesis button.

5-2-6. When the synthesis is completed, the synthesis report is automatically opened.

5-2-7. Note that the performance parameter has not changed; however, resource estimates show that
the design is not using any BRAM and other resources (FF, LUT) usage has also reduced.

(a) ZedBoard (b) Zybo

Figure 18. Resource estimation after Dataflow configuration command

Export and Implement the Design in Vivado HLS Step 6

6-1. In Vivado HLS, export the design, selecting VHDL as a language, and run
the implementation by selecting Evaluate option.

6-1-1. In Vivado HLS, select Solution > Export RTL or click on the button to open the dialog box so
the desired implementation can be run.

An Export RTL Dialog box will open.

6-1-2. Click on the drop-down button of the Evaluate Generated RTL field and select VHDL as the
language and click on the Vivado synthesis, place and route check box underneath.

6-1-3. Click OK and the implementation run will begin. You can observe the progress in the Vivado HLS
Console window. When the run is completed the implementation report will be displayed in the
information pane.

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-16
xup@xilinx.com

© Copyright 2017 Xilinx

(a) ZedBoard (b) Zybo

Figure 19. Implementation results in Vivado HLS

Note that the implementation was successful in case of ZedBoard but failed in case of Zybo.

6-1-4. Close Vivado HLS by selecting File > Exit.

Conclusion

In this lab, you learned that even though this design could not be pipelined at the top-level, a strategy of
pipelining the individual loops and then using dataflow optimization to make the functions operate in
parallel was able to achieve the same high throughput, processing one pixel per clock. When
DATAFLOW directive is applied, the default memory buffers (of ping-pong type) are automatically
inserted between the functions. Using the fact that the design used only sequential (streaming) data
accesses allowed the costly memory buffers associated with dataflow optimization to be replaced with
simple 2 element FIFOs using the Dataflow command configuration.

Lab Workbook Improving Performance Lab

www.xilinx.com/university Zynq 2-17
xup@xilinx.com

© Copyright 2017 Xilinx

Answers

1. Answer the following questions for yuv_filter:

Estimated clock period: 10.85 ns (ZedBoard) 8.71 ns (Zybo)

Worst case latency: 51621125 (ZedBoard) 61451525 (Zybo) clock cycles

Number of DSP48E used: 6

Number of BRAMs used: 12288

Number of FFs used: 688 (ZedBoard) 785 (Zybo)

Number of LUTs used: 1482 (ZedBoard) 1494 (Zybo)

2. Answer the following questions rgb2yuv:

Estimated clock period: 10.28 ns (ZedBoard) 6.42 ns (Zybo)

Worst case latency: 17207041 (ZedBoard) 22122241 (Zybo) clock cycles

Number of DSP48E used: 3

Number of FFs used: 203 (ZedBoard) 249 (Zybo)

Number of LUTs used: 514 (ZedBoard) 520 (Zybo)

3. Answer the following questions for yuv2rgb:

Estimated clock period: 10.85 ns (ZedBoard) 8.71 ns (Zybo)

Worst case latency: 19664641 (ZedBoard) 22122241 (Zybo) clock cycles

Number of DSP48E used: 3

Number of FFs used: 195 (ZedBoard) 221 (Zybo)

Number of LUTs used: 438 (ZedBoard) 441 (Zybo)

