
Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zybo 5-1
 xup@xilinx.com
 © copyright 2014 Xilinx

Reconfiguring User Logic Using Custom ICAP
Processor and Monitoring ICAP Signals Using

Vivado Analyzer Lab

Introduction

In this lab, the ICAP is accessed through a provided light-weight custom IP. The custom ICAP_processor
IP requires bitstream length, go, and done signals as input. The partial bitstream is provided by the
processor system by reading the partial bitfiles from the SD card, storing them in the DDR memory, and
sending the appropriate bitstream to the ICAP processor based on the user’s selection. The design has
one RP with two functional RMs. The integrated logic analyzer (ILA) core is used to monitor the ICAP
signals.

Objectives

After completing this lab, you will be able to:

• Use Tcl script to generate a Vivado IPI design having a PS7 sub-system, provided light-weight ICAP
processor and ICAP processor interface IPs

• Add Integrated Logic Analyzer core to monitor ICAP ports
• Configure the ILA to perform advanced triggering and conditional triggering

• Use one Tcl script which calls various Tcl scripts to synthesize the RMs, floorplan the design, add the
RMs, create multiple configurations, implement the design and generate the full and partial bitstreams
for various configurations

• Use Xilinx SDK program to create an application and a bootable BOOT.bin file
• Generate the corrupted partial bit files for inducing SYNC, IDECODE, and CRC errors

• Copy the generated bitstreams and the BOOT.bin on a SD Card and verify partial reconfigurable
design functionality

Design Description

The purpose of this lab exercise is to implement a design that is dynamically reconfigurable using the
light-weight ICAP processor. The design, shown in Figure 1, consists of the processor sub-system; ICAP
processor and ICAP interface IPs, ILA and one RP. The RP has two functional RMs performing right and
left shifting patterns on LEDs. The dynamic partial reconfigurable modules are updated the user
command

.

(a) Top-Level

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zybo 5-2 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

(b) Processor Subsystem

(c) ICAP_Processor IP

Figure 1. A Complete System

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zybo 5-3
 xup@xilinx.com
 © copyright 2014 Xilinx

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

General Flow for this Lab

Generate DCPs for the Static Design and RMs Step 1

1-1. Start the Vivado 2014.3 program and execute the provided Tcl script to
create the design having one RP.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2014.3 >
Vivado 2014.3

1-1-2. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/icap_processor_lab

1-1-3. Generate the PS design executing the provided Tcl script.

source ps7_create.tcl

This script will create the block design called system. It will:

• Instantiate ZYNQ PS with SD 0 and UART 1 peripherals, M_GP0 interface, and
FCLK_CLK0 and FCLK_RESET0_N ports enabled

• Add an instance of each of the provided icap_processor and icap_interface IPs, and two
instances of AXI GPIO. Configure one GPIO instance to be 1-bit input only (axi_gpio_1
instance in the diagram) and another with both channels enabled and configured as
output only: channel 1 one-bit and channel 2 32-bit wide.

• Make FCLK_CLK0 and several other signals external so they can be monitored at one-
level above by instantiating ILA

• The design looks like as shown in Figure 2.

Step 1:
Generate DCP

for Static
Design and

RMs

Step 2:
Load Static and

one RM for
each RP, and

Floorplan

Step 3:
Create

And Implement
First

Configuration

Step 4:
Create

And Implement
Second

Configuration

Step 5:
Run

PR_Verify

Step 6:
Generate Bit

Files

Step 7:
Generate the

Software
Application

Step 8:
Test the Design

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zybo 5-4 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 2. The processor system

• The drc will be run next to make sure that there are no design violations, the wrapper file
will be created, and the block design will be generated.

• Once the wrapper file is generated, the script will add the provided top.v and the static
design’s rest of the modules. The design hierarchy will look like as shown in Figure 3.

Figure 3. The design hierarchy including the processor system and other top-level modules

Notice the ? mark for the ila_inst instance as we still need to add that IP.

1-2. Add an ILA instance with the necessary number and appropriate size
probes so all signals of interest can be monitored.

1-2-1. In the IP Catalog expand Debug & Verification > Debug and double-click on the ILA entry and
click on the Customize IP button to open the Customize IP form.

The customization window will open.

1-2-2. Set the Number of Probes to 13, and Sample Data Depth to 2048. Click on the check boxes of
Capture Control and Advanced Trigger options as we want to utilize the functionality.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zybo 5-5
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 4. ILA customization- setting number of probes and other options

1-2-3. Click on the Probes_Ports(0..7) tab and change the size of the first four probes to 32, 32, 32, 32,
and click OK, leaving rest of the 9 probes width to 1.

Figure 5. Setting the probes widths

1-2-4. The Generate Output Products form will appear. Click on the Skip button as we will generate the
output product when we synthesize the complete design.

Expand the hierarchy window and notice that there are no ? present as all required modules are
in the design hierarchy.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zybo 5-6 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 6. The design hierarchy

1-2-5. Right-click on the ila_inst instance in the design hierarchy and select Out-of-Context Settings…

1-2-6. Uncheck the ila_0.xci check box, click OK and then click OK again.

1-2-7. Click on the Run Synthesis to start the synthesis process.

When the synthesis is completed a dialog box will appear to open the synthesized design.

1-2-8. Click Cancel.

1-2-9. Close the project.

1-2-10. Using the Windows Explorer copy the top.dcp from the
c:\XUP\PR\labs\icap_processor_lab\icap_processor_lab\icap_processor_lab.runs\Synth_1
directory and place it in the c:\XUP\PR\labs\icap_processor_lab\Synth\Static directory.

1-3. Generate the dcp for each of the RMs.

1-3-1. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/icap_processor_lab

1-3-2. Synthesize each of the RMs (two) executing the provided Tcl script.

source synth_reconfig_modules.tcl

This script will add the HDL files for a given RM, synthesize the module(s) for the RM in out of
context mode and write the design checkpoint (dcp) in the respective destination folder under the
Synth directory. After each RM’s dcp is generated, the respective design is closed.

Load Static and one RM for each RPs, and Floorplan Step 2

2-1. Load the static and one RM design for each of the RPs.

2-1-1. Open the Vivado 2014.3 Tcl Shell by selecting Start > All Programs > Xilinx Design Tools >
Vivado 2014.3 > Vivado 2014.3 Tcl Shell

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zybo 5-7
 xup@xilinx.com
 © copyright 2014 Xilinx

This version of tool crashes if you run the following tcl file from the Vivado GUI’s Tcl Shell tab.
Hence you must use the Tcl Shell in the non-GUI mode. This applies to this lab since it has ILA
core in the static dcp design. Labs, not using the ILA cores, won’t experience this problem.

2-1-2. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/icap_processor_lab

You can enter source run_complete.tcl command which will do everything from next step
onwards through generating bitstreams. If you use this command then read through but do not
execute any of the commands until Step 7

2-1-3. Execute the following Tcl script to

source floorplan_design.tcl

The script will do the following:

• Load the static design using the open_checkpoint command.

open_checkpoint Synth/Static/top.dcp

• Load one RM for of the RP by using the read_checkpoint command.

read_checkpoint -cell reconfig_leds

Synth/rModule_leds/leftshift/shift_synth.dcp

• Define each of the loaded RMs (submodules) as partially reconfigurable by setting the
HD.RECONFIGURABLE property using the following commands.

set_property HD.RECONFIGURABLE 1 [get_cells reconfig_leds]

• Read the debug nets information from the saved debug.xdc file

read_xdc Synth/Static/debug.xdc

• Save the assembled design state for this initial configuration (Is this required or optional)
using the following command.

write_checkpoint Checkpoint/top_link_left.dcp

• Read the provided floorplan constraints file which defines the RP regions.

read_xdc Sources/xdc/fplan.xdc

• Load the top-level constraint file by executing the following command.

read_xdc Sources/xdc/top_io.xdc

Create and Implement the First Configuration Step 3

3-1. Create and implement the first configuration.

3-1-1. Execute the following command from the Tcl console after making sure that the working directory
is set to c:/xup/PR/labs/icap_processor_lab.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zybo 5-8 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

source create_first_configuration.tcl

Note that at this point the debug cores will be generated so it will take a while to finish executing
the script.

• The script will optimize, place and route the design by executing the following commands.

opt_design

place_design

route_design

• Save the full design checkpoint and create report files by executing the following
commands:

write_checkpoint -force

Implement/Config_left/top_route_design.dcp

report_utilization -file

Implement/Config_left/top_utilization.rpt

• Save checkpoints for each of the reconfigurable modules by issuing these two
commands:

write_checkpoint -force -cell reconfig_leds

Checkpoint/shift_left_route_design.dcp

• Write the debug_netx.ltx file which will be used in the Vivado Hardware Analyzer in the
Testing step.

write_debug_probes ./Implement/Config_left/debug_nets.ltx

3-2. After the first configuration is created, the static logic implementation will
be reused for the rest of the configurations. So it should be saved. But
before you save it, the loaded RM should be removed.

3-2-1. Execute the following command to update the design with the blackbox and write the checkpoint.

source lock_placement_with_blackbox.tcl

The script will do the following tasks:

• Clear out the existing RMs executing the following commands.

update_design -cells reconfig_leds -black_box

• Lock down all placement and routing by executing the following command.

lock_design -level routing

• Write out the remaining static-only checkpoint by executing the following command.

write_checkpoint -force Checkpoint/static_route_design.dcp

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zybo 5-9
 xup@xilinx.com
 © copyright 2014 Xilinx

Create Other Configurations Step 4

4-1. Read next set of RM dcps, create and implement the second configuration.

4-1-1. Execute the following command to create and implement the second configuration

source create_second_configuration.tcl

The script will do the following tasks:

• With the locked static design open in memory, read in post-synthesis checkpoints for the
other two reconfigurable modules.

read_checkpoint -cell reconfig_leds

Synth/rModule_leds/rightshift/shift_synth.dcp

• Optimize, place and route the design by executing the following commands.

opt_design

place_design

route_design

• Save the full design checkpoint by executing the following command.

write_checkpoint -force

Implement/Config_right/top_route_design.dcp

• Save the checkpoints for each of the reconfigurable modules by issuing the following
commands.

write_checkpoint -force -cell reconfig_leds

Checkpoint/shift_right_route_design.dcp

• Close the project

Close_project

4-2. Create the blanking configuration.

4-2-1. Execute the following command to create and implement the second configuration

source create_blanking_configuration.tcl

The script will do the following tasks:

• Open the static route checkpoint.

open_checkpoint Checkpoint/static_route_design.dcp

• For creating the blanking configuration, use the update_design -buffer_ports

command to insert LUTs tied to constants to ensure the outputs of the reconfigurable
partition are not left floating.

update_design -buffer_ports –cell reconfig_leds

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zybo 5-10 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

• Now place and route the design. There is no need to optimize the design.

place_design

route_design

The base (or blanking) configuration bitstream, when we generate in the next section, will
have no logic for either reconfigurable partition, simply outputs driven by ground. Outputs
can be tied to VCC if desired, using the HD.PARTPIN_TIEOFF property.

• Save the checkpoint in the Config_blank directory.

write_checkpoint -force

Implement/Config_blank/top_route_design.dcp

• Close the project

Close_project

Run PR_Verify Step 5

5-1. You must ensure that the static implementation, including interfaces to
reconfigurable regions, is consistent across all Configurations. To verify
this, you run the PR_Verify utility

5-1-1. Run the pr_verify command from the Tcl Console.

source verify_configurations.tcl

The script will perform the following tasks:

• execute the pr_verify command and then close the project:

pr_verify -initial Implement/Config_left/top_route_design.dcp -

additional {Implement/Config_right/top_route_design.dcp

Implement/Config_blank/top_route_design.dcp}

You should see the message indicating the Config_left configuration is compatible with

Config_right, and the Config_left configuration is compatible with Config_blank.

• Execute the following command to close the project.

close_project

Generate Bit Files Step 6

6-1. After all the Configurations have been validated by PR_Verify, full and
partial bit files must be generated for the entire project

6-1-1. Generate the full configurations and partial bitstreams by executing the following tcl script.

source generate_bitstreams.tcl

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zybo 5-11
 xup@xilinx.com
 © copyright 2014 Xilinx

6-1-2. The script will do the following tasks:

• Read the first configuration in the memory and generate the bitstreams both in bit and bin
formats. The second command below generates the bit files with per frame CRC

open_checkpoint Implement/Config_left/top_route_design.dcp

set_property bitstream.general.perFrameCRC yes [current_design]

write_bitstream –bin -file Bitstreams/Config_addleft.bit

close_project

• Generate the bitstreams for the second configuration

open_checkpoint Implement/Config_right/top_route_design.dcp

set_property bitstream.general.perFrameCRC yes [current_design]

write_bitstream –bin -file Bitstreams/Config_multright.bit

close_project

• Generate the bitstreams with black boxes.

open_checkpoint Checkpoint/static_route_design.dcp

set_property bitstream.general.perFrameCRC yes [current_design]

write_bitstream –bin -file Bitstreams/blanking.bit

close_project

6-1-3. Close the Vivado Tcl prompt window.

Generate the Software Application Step 7

7-1. Open the PS design that was created in Step 1. Export the hardware design
and launch SDK.

7-1-1. In Vivado, click on the Open Project link, browse to
c:/xup/PR/labs/icap_processor_lab/icap_processor_ lab, select the icap_processor_lab.xpr and
click OK to open the design created in Step 1.

7-1-2. Select File > Export > Export Hardware…

7-1-3. In the Export Hardware form, make sure that the Include bitstream checkbox is not checked and
click OK.

7-1-4. Select File > Launch SDK

7-1-5. Click OK to launch SDK.

The SDK program will open. Close the Welcome tab if it opens.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zybo 5-12 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

7-2. Create a Board Support Package enabling FAT file system.

7-2-1. In SDK, select File > New > Board Support Package.

7-2-2. Click Finish with the default settings (with standalone operating system). This will open the
Software Platform Settings form showing the OS and libraries selections.

7-2-3. Select xilffs as the FAT file support is necessary to read the partial bit files.

7-2-4. Click OK to accept the settings and create the BSP.

7-3. Create an application.

7-3-1. Select File > New > Application Project.

7-3-2. Enter TestApp as the Project Name, and for Board Support Package, choose Use Existing
(standalone_bsp_0 should be the only option).

7-3-3. Click Next, and select Empty Application and click Finish.

7-3-4. Expand the TestApp entry in the project view, right-click the src folder, and select Import.

7-3-5. Expand General category and double-click on File System.

7-3-6. Browse to c:\xup\PR\labs\icap_processor_lab\Sources\TestApp\src and click OK.

7-3-7. Select TestApp.c and click Finish to add the file to the project.

The program should compile successfully. Fix errors if any.

7-4. Create a zynq_fsbl application.

7-4-1. Select File > New > Application Project.

7-4-2. Enter zynq_fsbl as the Project Name, and for Board Support Package, choose Create New.

7-4-3. Click Next, select Zynq FSBL, and click Finish. This will create the first stage bootloader
application called zynq_fsbl.elf

7-5. Create a Zynq boot image.

7-5-1. Select Xilinx Tools > Create Zynq Boot Image.

7-5-2. Click the Browse button of the Output BIF file path field, browse to
c:\xup\PR\labs\icap_processor_lab, and then click Save with the output.bif as the default filename.

7-5-3. Click on the Add button of the Boot image partitions, click the Browse button in the Add Partition
form, browse to

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zybo 5-13
 xup@xilinx.com
 © copyright 2014 Xilinx

c:\xup\PR\labs\icap_processor_lab\icap_processor_lab\icap_processor_lab.sdk\zynq_fsbl\
Debug directory, select zynq_fsbl.elf and click Open.

7-5-4. Click OK.

7-5-1. Click again on the Add button of the Boot Image partitions, click the Browse button in the Add
Partition form, browse to c:\xup\PR\labs\icap_processor_lab\Bitstreams directory, select
blanking.bit and click Open.

7-5-2. Click OK.

7-5-3. Click again on the Add button of the Boot Image partitions, click the Browse button in the Add
Partition form, browse to
c:\xup\PR\labs\icap_processor_lab\icap_processor_lab\icap_processor_lab.sdk\TestApp\De
bug directory, select TestApp.elf and click Open.

7-5-4. Click OK.

7-5-5. Make sure that the output path is c:\xup\PR\labs\icap_processor_lab and the filename is
BOOT.bin, and click Create Image.

7-5-6. Close the SDK program by selecting File > Exit.

7-5-7. Close the project in Vivado.

Test the Design Step 8

8-1. Place the board in the SD boot mode. Make one copy each of left.bin,
b_led.bin, and right.bin files. Rename the copied files as sync.bin,
idcode.bin, and crc.bin respectively. Corrupt the sync.bin to have
corrupted sync word, idcode.bin to have the corrupted idcode, and crc.bin
to have the corrupted first frame crc. Copy them along with the BOOT.bin
file on the SD card.

8-1-1. Make sure that the board is set to boot in SD card boot mode.

8-1-2. Using the Windows Explorer, copy the BOOT.bin from the c:/xup/PR/icap_processor_lab/
directory on to a SD Card.

8-1-3. Rename the partial bitstreams in the bitstreams directory as listed in the table.

Source Name New Name

blanking_pblock_reconfig_leds_partial.bin b_led.bin

Config_left_pblock_reconfig_leds_partial.bin left.bin

Config_right_pblock_reconfig_leds_partial.bin right.bin

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zybo 5-14 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

8-1-4. Make one copy each of left.bin, b_led.bin, and right.bin files. Rename the copied files as
sync.bin, idcode.bin, and crc.bin respectively.

8-1-5. Using a Hex Editor, open the sync.bin file and make change to the SYNC word so it looks like as
shown below and then save the file.

Figure 7. Corrupting the sync word

8-1-6. Similarly, open the idcode.bin file, change the IDCODE field as shown below, and save it.

Figure 8. Corrupting the id code

8-1-7. Similarly, open the crc.bin file, change the crc code of the first frame as shown below (note the
file offset [row starting at 210]), and save it.

Figure 9. Corrupting the first frame’s crc

8-1-8. Close the Hex editor program.

8-1-9. Copy the partial bitfiles (the original b_led, Left, right, and the new sync, idcode, and crc files) to
the SD card.

If you don’t have an access to the hex editor or equivalent, copy the BOOT.bin. left.bin,
sync.bin, b_led.bin, idcode.bin, right.bin and crc.bin files from the bitstreams_debug folder
and place them on the SD card.

8-2. Connect the board with one micro-USB cable to the PROG UART connector.
Start a terminal emulator program such as TeraTerm or HyperTerminal.
Select an appropriate COM port (you can find the correct COM number
using the Control Panel). Set the COM port for 115200 baud rate
communication.

8-2-1. Make sure that one micro-usb cable is connected between the PROG UART connector of the
board and the PC.

8-2-2. Power ON the board.

8-2-3. Start a terminal emulator program such as TeraTerm or HyperTerminal.

8-2-4. Select the appropriate COM port (you can find the correct COM number using the Control Panel).

8-2-5. Set the COM port for 115200 baud rate communication.

8-2-6. Press BTN7 to display a menu.

8-2-7. Follow the menu and test various reconfigurations.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zybo 5-15
 xup@xilinx.com
 © copyright 2014 Xilinx

8-3. Analyze waveforms using Vivado Analyzer.

8-3-1. Make sure that the working directory in the Tcl shell is
c:/xup/PR/labs/icap_processor_lab. If not then set it using the cd command.

8-3-2. Enter the following command to open the hardware manager, program the FPGA, and open the
hardware manager’s dashboard.

source run_ila.tcl

8-3-3. Click the Stop Trigger button () to see the waveform.

8-3-4. Press BTN7 on the board, wait for the Done LED to illuminate, and then click the Run Trigger

button () to trigger the ILA.

You will see that the run is waiting for the trigger condition to occur, which is writing to the ICAP.

Figure 10. Waiting for the trigger condition to occur

8-3-5. In the terminal window, type L and observe the LEDs are shifting left and the ILA has triggered.

8-3-6. Zoom in into the beginning part of the waveform, click around 380 and notice the SYNC word is
detected and the ICAP output changes from 0xFFFFFF9B to 0xFFFFFFDB around sample 373
indicating SYNC word is detected.

Figure 11. SYNC word detected

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zybo 5-16 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

8-3-7. View the first few samples to see that the RP_enable is de-asserted when icap_go is asserted.
You want to isolate the RM when the reconfiguration is going on. You can use this signal
(RP_enable) in your RM interface logic to isolate the RP during the reconfiguration.

Figure 12. Activities around starting of the reconfiguration process

8-3-8. Click the Run Trigger button and then switch to the ILA-hw_ila_1 tab and observe that it is waiting
for the trigger to occur.

8-3-9. Type S to send the SYNC word corrupted bitstream and observe the waveform.

Notice that the LEDs are still shifting left, however at 380 the ICAP output did not change.

Figure 13. SYNC word error

8-3-10. Type R and observe the LEDs shifting right.

8-3-11. Click the Run Trigger button () to trigger the ILA and then switch to the ILA-hw_ila_1 tab and
observe that it is waiting for the trigger to occur.

8-3-12. Type I to trigger the ILA and then observe the waveform.

Notice that the LEDs are still shifting right. The ICAP output changed around 373 indicating
SYNC word detected. Around 523 the corrupted IDCODE came and around 800 the ICAP output
changed to 0xFFFFFF5B followed by status change to 0xFFFFF1B indicating the reconfiguration
was aborted.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zybo 5-17
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 14. IDCODE word error

8-4. Use Advance Triggering to analyze end of the configuration activities

8-4-1. In the ILA – hw_ila_1 tab, click on the drop-down button of the Trigger mode and select
ADVANCED_ONLY.

8-4-2. Click on the browse button, browse to c:/xup/PR/labs/icap_processor_lab/Sources
and select the provided ila.tsm (the trigger state machine).

Figure 15. Setting the ILA for the advanced triggering

The ila.tsm will be loaded and the window will open showing the state machine.

Figure 16. The ILA state machine

Line 1 and 8 define states. In the wait_for_icapgo state, the ILA will wait for the icap_go to
become 1 and when the condition occurs, it will go to the second state- wait_for_reconfig_done.
Once in the wait_for_reconfig_done state, it will wait for the reconfig_done to become 1. When
the condition occurs it will trigger storing the number of pre-trigger samples and filling the rest of
the buffer with the post-trigger samples.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zybo 5-18 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

8-4-3. Set the Trigger position to 2000 (as we are interested in what was happening before the
reconfiguration is completed).

8-4-4. Click on the Run Trigger button to arm the ILA and waiting for user input in the terminal window.

8-4-5. In the terminal window type l, r, or b to successfully reconfigure the RM.

The ILA will trigger. Switch to the waveform and view the end area. Notice that the ICAP_dataout
changes from 0xFFFFFFDB (normal reconfiguration) to successfully completed reconfiguration
(0xFFFFFF9B).

Figure 17. The triggered ILA waveform view

8-4-6. Zoom to the end of the capture (1900 – 2048 samples) and observe the activities.

Notice that after the reconfiguration_done goes high, the RP_enable is asserted along with one-
clock cycle RP_reset pulse. This enables the brought-in RM and also resets it to the starting
desired state.

Figure 18. Zoomed view showing the activities on various signals when the
reconfiguration is done

8-5. Use Advance Triggering to analyze the crc error

8-5-1. In the ILA – hw_ila_1 tab, click on the browse button of the Trigger state machine, browse to
c:/xup/PR/labs/icap_processor_lab/Sources and select the provided ila_crc.tsm.

Observe that the second state is monitoring ICAP_dataout and waiting for 32’HFFFFF1B (the
abort word).

8-5-2. Set the trigger position to 1024.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zybo 5-19
 xup@xilinx.com
 © copyright 2014 Xilinx

8-5-3. Run the ILA.

8-5-4. Press L to configure RM with the left shift functionality. Notice that the ILA did not trigger since
the abort sequence did not occur.

8-5-5. Press C to configure RM with the corrupted CRC, and observe the ILA has triggered.

The ICAP_dataout changes value from 0xFFFFFFDB > 0xFFFFFF5B > 0xFFFFFF1B, i.e. sync
received to configuration error.

Figure 19. CRC error

8-5-6. If you scroll left (around sample 1009), you will see 0x43F1FFFF, the corrupted CRC, on the
DATA2ICAP_processor bus.

8-5-7. In the Hardware window, select the Zynq device and look at its properties.

8-5-8. In the Properties form, expand the CONFIG_STATUS register and note that the
BIT00_CRC_ERROR has value of 1.

If you don’t see it to be 1 then right-click on the Zynq device and select Refresh Device. The
status register will be updated.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zybo 5-20 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 20. Verifying the CRC error in the CONFIG_STATUS register

8-5-9. Select File > Close Hardware Manager

8-5-10. Power off the board and close Vivado.

Conclusion

This lab showed you how the custom ICAP_processor can be used to reconfigure RPs. The ILA core was
used to monitor the ICAP ports and analyze the activities taking place during the reconfiguration including
various error conditions. You also used advanced triggering features of the ILA.

