
Lab Workbook Reconfiguring with HW-SW Triggers Using PRC Lab

 www.xilinx.com/support/university Zybo 6-1
 xup@xilinx.com
 © copyright 2014 Xilinx

Reconfiguring with HW-SW Triggers Using PRC
Lab

Introduction

In this lab, you will use the Partial Reconfiguration Controller (PRC) core to reconfigure a design that has
two Reconfigurable Partitions (RP), each having two Reconfigurable Module (RM). The provided PRC
core is currently a Beta version, production planned for the Vivado 2015.1 release. You will go through
the design process and then use the provided design checkpoint to implement the design. You will
continue through the PR flow to generate the full and partial bitstreams.

Objectives

After completing this lab, you will be able to:

• Use a Tcl script to generate a Vivado IPI design having a PS7 sub-system and the PRC along with
the math RP

• Configure the PRC for both software and hardware triggers

• Use the provided static dcp (design checkpoint) having the PRC functionality
• Use various Tcl scripts to synthesize the RMs, floorplan the design, add the RMs, create multiple

configurations, implement the design and generate the full and partial bitstreams for various
configurations

• Use Xilinx SDK program to create an application and a bootable BOOT.bin file

• Copy the generated bitstreams and the BOOT.bin on a SD Card and verify partial reconfigurable
design functionality

Design Description

The purpose of this lab exercise is to implement a design that is dynamically reconfigurable using the
PRC. The design, shown in Figure 1, consists of the PRC and two RPs. Each RP has two RMs. The two
RPs are: math and led. The math RP consists of two functions: addition and multiplication, whereas the
led RP consist of right and left shifting pattern of LEDs. User interacts with math RP using a terminal
emulator program whereas interaction with led RP is achieved using push-buttons. The dynamic partial
reconfigurable modules are updated either through menu using the PRC’s software triggers capability or
through push-buttons using the hardware triggers.

Reconfiguring with HW-SW Triggers Using PRC Lab Lab Workbook

Zybo 6-2 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 1. A Complete System

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

General Flow for this Lab

Step 1:
Generate DCP

for Static
Design and

RMs

Step 2:
Load Static and

one RM for
each RP, and

Floorplan

Step 3:
Create

And Implement
First

Configuration

Step 4:
Create

And Implement
Second

Configuration

Step 5:
Run

PR_Verify

Step 6:
Generate Bit

Files

Step 7:
Generate the

Software
Application

Step 8:
Test the Design

Lab Workbook Reconfiguring with HW-SW Triggers Using PRC Lab

 www.xilinx.com/support/university Zybo 6-3
 xup@xilinx.com
 © copyright 2014 Xilinx

Generate DCPs for the Static Design and RMs Step 1

1-1. Start the Vivado 2014.3 program and execute the provided Tcl script to
create the design check point for the static design having two RPs.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2014.3 >
Vivado 2014.3

1-1-2. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/prc_lab

1-1-3. Generate the PS design executing the provided Tcl script.

source ps7_create_with_prc.tcl

This script will create the block design called system, it will:

• Set the project settings to point to the provided ip repository (having math ip and PR
Controller)

• Instantiate ZYNQ PS with SD 0 and UART 1 peripherals enabled, M_GP0 and S_HP0 (in
32-bit mode) enabled, and FCLK_CLK0 and FCLK_RESET0_N ports enabled

• Add the math ip and run connection wizard to connect it to the M_GP0 interface
instantiating axi_interconnect

• Add the prc instance, add another axi_interconnect instance. Connect the added
axi_interconnect instance to the S_HP0 interface on one side and prc’s m_axi_mem
interface on the other side

• Configure the prc instance to provide the AXI Lite interface so the software can read and
write various registers (Figure 2), specify the number of clock domain crossing stages to
2 (since we have a single clock domain design) (Figure 2)

Figure 2. Selecting AXI Lite interface and clock domain crossing stages

• Support two RPs (Figure 3, 4, and 5) each having 3 RMS (including blanking RM). The
PRC is designed to have power of 2 number of RMs so even when 3 is selected 4 RMs
support will be included. The Virtual Socket Manager needs to be created first, followed
by giving meaningful name to it, and defining number of RMs in that RP. Next create RM,

Reconfiguring with HW-SW Triggers Using PRC Lab Lab Workbook

Zybo 6-4 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

giving name, bitstream address and size (Figure 3). The bitstream address and size can
be a known value or it can be anything if the application will be writing the correct values
to the corresponding registers during the run-time

Figure 3. Creating Virtual Socket Manager for math RP, defining number of RMs, adding
new RM called add, and assigned bitstream address and size

• Create another RM with the relevant information (Figure 4) and create a blanking RM
(Figure 5). Then assign the trigger IDs to the RMs (Figure 6)

Figure 4. Creating another RM

Figure 5. Creating blanking RM

Lab Workbook Reconfiguring with HW-SW Triggers Using PRC Lab

 www.xilinx.com/support/university Zybo 6-5
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 6. Setting up trigger IDs

• Next, create the second RP and associated RMs (Figure 7)

Figure 7. Creating and setting up the second RP

• You can review the hardware/software triggers in the Trigger Mapping tab of the PRC
configuration window (Figure 8)

Figure 8. Triggers mapping

• Once the prc instance is configured, the connections will be made between various
instances, creating some external ports (Figure 9)

Reconfiguring with HW-SW Triggers Using PRC Lab Lab Workbook

Zybo 6-6 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 9. The complete ps7-based design

• The drc will be run next to make sure that there are no design violations, the wrapper file
will be created, and the block design will be generated. The block design generation will
create configuration information file under the
C:\xup\PR\labs\prc_lab\prc_lab\prc_lab.srcs\sources_1\bd\system\i

p\system_prc_0_0\documentation directory. This file carries the register mapping

information

• Once the wrapper file is generated, the script will add the provided top.v and static
design’s rest of the modules. The design hierarchy will look like as shown in Figure 10

Lab Workbook Reconfiguring with HW-SW Triggers Using PRC Lab

 www.xilinx.com/support/university Zybo 6-7
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 10. The design hierarchy

At this point the next step would be to synthesize the design. However, since the prc instance
cannot be synthesized, the top.dcp file is provided to you in the Synth\Statics directory.

1-1-4. Click on the Open Block Design in the Flow Navigator and verify the above mentioned steps.
Double click on the prc_0 instance to see all the customization of the PRC core.

1-1-5. Once satisfied, close the project without saving it.

1-2. Generate the dcp for each of the RMs.

1-2-1. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/prc_lab

1-2-2. Synthesize each of the RMs (two for rp_instance and two for the shift) executing the provided Tcl
script.

source synth_reconfig_modules.tcl

This script will add the HDL files for a given RM, synthesize the module(s) in out of context mode
and write the design checkpoint (dcp) in the respective destination folder under the Synth
directory. After each RM’s dcp is generated, the respective design is closed.

Load Static and one RM for each RPs, and Floorplan Step 2

2-1. Load the static and one RM design for each of the RPs.

2-1-1. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/prc_lab

Reconfiguring with HW-SW Triggers Using PRC Lab Lab Workbook

Zybo 6-8 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

2-1-2. Execute the following Tcl script to

source floorplan_design.tcl

The script will do the following:

• Load the static design using the open_checkpoint command.

open_checkpoint Synth/Static/top.dcp

• Load one RM for each RP by using the read_checkpoint command.

read_checkpoint -cell

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance

Synth/reconfig_modules/rp_add/add_mult_synth.dcp

read_checkpoint -cell reconfig_leds

Synth/rModule_leds/leftshift/shift_synth.dcp

• Define each of the loaded RMs (submodules) as partially reconfigurable by setting the
HD.RECONFIGURABLE property using the following commands.

set_property HD.RECONFIGURABLE 1 [get_cells

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance]

set_property HD.RECONFIGURABLE 1 [get_cells reconfig_leds]

• Save the assembled design state for this initial configuration (Is this required or optional)
using the following command.

write_checkpoint Checkpoint/top_link_add_left.dcp

• Read the provided floorplan constraints file which defines the RP regions.

read_xdc Sources/xdc/fplan.xdc

• Load the top-level constraint file by executing the following command.

read_xdc Sources/xdc/top_io.xdc

Create and Implement the First Configuration Step 3

3-1. Create and implement the first configuration.

3-1-1. Execute the following command from the Tcl console after making sure that the working directory
is set to c:\xup\PR\labs\prc_lab.

source create_first_configuration.tcl

• The script will optimize, place and route the design by executing the following commands.

opt_design

place_design

route_design

Lab Workbook Reconfiguring with HW-SW Triggers Using PRC Lab

 www.xilinx.com/support/university Zybo 6-9
 xup@xilinx.com
 © copyright 2014 Xilinx

• Save the full design checkpoint and create report files by executing the following
commands:

write_checkpoint -force

Implement/Config_add_left/top_route_design.dcp

report_utilization -file

Implement/Config_add_left/top_utilization.rpt

• Save checkpoints for each of the reconfigurable modules by issuing these two
commands:

write_checkpoint -force -cell

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance

Checkpoint/math_add_route_design.dcp

write_checkpoint -force -cell reconfig_leds

Checkpoint/shift_left_route_design.dcp

3-2. After the first configuration is created, the static logic implementation will
be reused for the rest of the configurations. So it should be saved. But
before you save it, the loaded RM should be removed.

3-2-1. Execute the following command to update the design with the blackbox and write the checkpoint.

source lock_placement_with_blackbox.tcl

The script will do the following tasks:

• Clear out the existing RMs executing the following commands.

update_design -cells

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance –black_box

update_design -cells reconfig_leds -black_box

• Lock down all placement and routing by executing the following command.

lock_design -level routing

• Write out the remaining static-only checkpoint by executing the following command.

write_checkpoint -force Checkpoint/static_route_design.dcp

Create and Implement the Second Configuration Step 4

4-1. Read next set of RM dcps, create and implement the second configuration.

4-1-1. Execute the following command to create and implement the second configuration

source create_second_configuration.tcl

The script will do the following tasks:

• With the locked static design open in memory, read in post-synthesis checkpoints for the
other two reconfigurable modules.

Reconfiguring with HW-SW Triggers Using PRC Lab Lab Workbook

Zybo 6-10 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

read_checkpoint -cell

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance

Synth/reconfig_modules/rp_mult/add_mult_synth.dcp

read_checkpoint -cell reconfig_leds

Synth/rModule_leds/rightshift/shift_synth.dcp

• Optimize, place and route the design by executing the following commands.

opt_design

place_design

route_design

• Save the full design checkpoint by executing the following command.

write_checkpoint -force

Implement/Config_mult_right/top_route_design.dcp

• Save the checkpoints for each of the reconfigurable modules by issuing the following
commands.

write_checkpoint -force -cell

system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance

Checkpoint/math_mult_route_design.dcp

write_checkpoint -force -cell reconfig_leds

Checkpoint/shift_right_route_design.dcp

• Close the project

Close_project

4-2. Create the blanking configuration.

4-2-1. Execute the following command to create and implement the second configuration

source create_blanking_configuration.tcl

The script will do the following tasks:

• Open the static route checkpoint.

open_checkpoint Checkpoint/static_route_design.dcp

• For creating the blanking configuration, use the update_design -buffer_ports

command to insert LUTs tied to constants to ensure the outputs of the reconfigurable
partition are not left floating.
update_design -buffer_ports -cell
system_i/math_0/inst/math_v1_0_S_AXI_inst/rp_instance

update_design -buffer_ports –cell reconfig_leds

• Now place and route the design. There is no need to optimize the design.

place_design

Lab Workbook Reconfiguring with HW-SW Triggers Using PRC Lab

 www.xilinx.com/support/university Zybo 6-11
 xup@xilinx.com
 © copyright 2014 Xilinx

route_design

The base (or blanking) configuration bitstream, when we generate in the next section, will
have no logic for either reconfigurable partition, simply outputs driven by ground. Outputs
can be tied to VCC if desired, using the HD.PARTPIN_TIEOFF property.

• Save the checkpoint in the Config_blank directory.

write_checkpoint -force

Implement/Config_blank/top_route_design.dcp

• Close the project

Close_project

Run PR_Verify Step 5

5-1. You must ensure that the static implementation, including interfaces to
reconfigurable regions, is consistent across all Configurations. To verify
this, you run the PR_Verify utility

5-1-1. Run the pr_verify command from the Tcl Console.

source verify_configurations.tcl

The script will perform the following tasks:

• execute the pr_verify command and then close the project:

pr_verify -initial Implement/Config_add_left/top_route_design.dcp

-additional {Implement/Config_mult_right/top_route_design.dcp

Implement/Config_blank/top_route_design.dcp}

You should see the message indicating the Config_add_left configuration is compatible with

Config_mult_right, and the Config_add_left configuration is compatible with

Config_blank.

• Execute the following command to close the project.

close_project

Generate Bit Files Step 6

6-1. After all the Configurations have been validated by PR_Verify, full and
partial bit files must be generated for the entire project

6-1-1. Generate full configuration and partial bitstreams by executing the following tcl script.

source generate_bitstreams.tcl

6-1-2. The script will do the following tasks:

Reconfiguring with HW-SW Triggers Using PRC Lab Lab Workbook

Zybo 6-12 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

• Read the first configuration in the memory and generate the bitstreams both in bit and bin
formats

open_checkpoint Implement/Config_add_left/top_route_design.dcp

write_bitstream –bin -file Bitstreams/Config_addleft.bit

close_project

• Generate the bitstreams for the second configuration

open_checkpoint Implement/Config_mult_right/top_route_design.dcp

write_bitstream –bin -file Bitstreams/Config_multright.bit

close_project

• Generate the bitstreams with black boxes.

open_checkpoint Checkpoint/static_route_design.dcp

write_bitstream –bin -file Bitstreams/blanking.bit

close_project

Generate the Software Application Step 7

7-1. Open the PS design that was created in Step 1. Export the hardware design
and launch SDK.

7-1-1. Click on the Open Project link, browse to c:/xup/PR/labs/prc_lab/prc_ lab, select the prc_lab.xpr
and click OK to open the design created in Step 1.

7-1-2. Select File > Export > Export Hardware…

7-1-3. In the Export Hardware form, make sure that the Include bitstream checkbox is not checked and
click OK.

7-1-4. Select File > Launch SDK

7-1-5. Click OK to launch SDK.

The SDK program will open. Close the Welcome tab if it opens.

7-2. Create a Board Support Package enabling FAT file system.

7-2-1. In SDK, select File > New > Board Support Package.

7-2-2. Click Finish with the default settings (with standalone operating system).

This will open the Software Platform Settings form showing the OS and libraries selections.

7-2-3. Select xilffs as the FAT file support is necessary to read the partial bit files.

Lab Workbook Reconfiguring with HW-SW Triggers Using PRC Lab

 www.xilinx.com/support/university Zybo 6-13
 xup@xilinx.com
 © copyright 2014 Xilinx

7-2-4. Click OK to accept the settings and create the BSP.

7-3. Create an application.

7-3-1. Select File > New > Application Project.

7-3-2. Enter TestApp as the Project Name, and for Board Support Package, choose Use Existing
(standalone_bsp_0 should be the only option).

7-3-3. Click Next, and select Empty Application and click Finish.

7-3-4. Expand the TestApp entry in the project view, right-click the src folder, and select Import.

7-3-5. Expand General category and double-click on File System.

7-3-6. Browse to c:\xup\PR\labs\prc_lab\Sources\TestApp\src and click OK.

7-3-7. Select TestApp.c and click Finish to add the file to the project.

The program should compile successfully.

7-4. Create a zynq_fsbl application.

7-4-1. Select File > New > Application Project.

7-4-2. Enter zynq_fsbl as the Project Name, and for Board Support Package, choose Create New.

7-4-3. Click Next, select Zynq FSBL, and click Finish.

This will create the first stage bootloader application called zynq_fsbl.elf

7-5. Create a Zynq boot image.

7-5-1. Select Xilinx Tools > Create Zynq Boot Image.

7-5-2. Click the Browse button of the Output BIF file path field, browse to c:\xup\PR\labs\prc_lab, and then
click Save with the output.bif as the default filename.

7-5-3. Click on the Add button of the Boot image partitions, click the Browse button in the Add Partition
form, browse to c:\xup\PR\labs\prc_lab\prc_lab\prc_lab.sdk\zynq_fsbl\Debug directory, select
zynq_fsbl.elf and click Open.

7-5-4. Click OK.

7-5-1. Click again on the Add button of the Boot Image partitions, click the Browse button in the Add
Partition form, browse to c:\xup\PR\labs\prc_lab\Bitstreams directory, select blanking.bit and
click Open.

7-5-2. Click OK.

Reconfiguring with HW-SW Triggers Using PRC Lab Lab Workbook

Zybo 6-14 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

7-5-3. Click again on the Add button of the Boot Image partitions, click the Browse button in the Add
Partition form, browse to c:\xup\PR\labs\prc_lab\prc_lab\prc_lab.sdk\TestApp\Debug directory,
select TestApp.elf and click Open.

7-5-4. Click OK.

7-5-5. Make sure that the output path is c:\xup\PR\labs\prc_lab and the filename is BOOT.bin, and
click Create Image.

7-5-6. Close the SDK program by selecting File > Exit.

Test the Design Step 8

8-1. Connect the board with one micro-USB cable (UART port). Place the board
in the SD boot mode. Copy the BOOT.bin file on the SD Card. Copy the
partial bin files generated in the bitstreams directory on the SD card,
rename them as shown in the table below, and place the SD card in the
board. Power On the board.

8-1-1. Make sure that one micro-usb cable is connected between the UART port and the PC.

8-1-2. Make sure that the board is set to boot in SD card boot mode.

8-1-3. Using the Windows Explorer, copy the BOOT.bin from the c:\xup\PR\prc_lab directory on to a SD
Card.

8-1-4. Copy the six partial bin files from the bitstreams directory and rename them as listed in the
table.

Source Name New Name

blanking_pblock_reconfig_leds_partial.bin b_led.bin

blanking_pblock_rp_instance_partial.bin b.math.bin

config_addleft_pblock_reconfig_leds_partial.bin left.bin

config_addleft_pblock_rp_instance_partial.bin add.bin

config_multright_pblock_reconfig_leds_partial.bin right.bin

config_multright_pblock_rp_instance_partial.bin mult.bin

8-1-5. Place the SD Card in the board and power ON the board.

8-2. Start a terminal emulator program such as TeraTerm or HyperTerminal.
Select an appropriate COM port (you can find the correct COM number
using the Control Panel). Set the COM port for 115200 baud rate
communication.

Lab Workbook Reconfiguring with HW-SW Triggers Using PRC Lab

 www.xilinx.com/support/university Zybo 6-15
 xup@xilinx.com
 © copyright 2014 Xilinx

8-2-1. Start a terminal emulator program such as TeraTerm or HyperTerminal.

8-2-2. Select the appropriate COM port (you can find the correct COM number using the Control Panel).

8-2-3. Set the COM port for 115200 baud rate communication.

8-2-4. Press BTN7 on the board and see the initial PRC configuration activities followed by the menu.

At this point you can use the menu to generate the software triggers or press the push-buttons to
generate the hardware triggers to partially reconfigure the RPs.

You can press BTN0 to reconfigure with the add functionality, press BTN1 with mult, BTN2 with
left shift, and BTN3 with right shift. When you press BTN4 it will reconfigure both RPs with
blanking bitstreams.

SW1 will stop shifting and SW0 will restart the shifting.

Also note that when the math RP is loaded with the blanking bitstream followed by entering the
operands, the output will be what was computed before and not 0. This is due to the fact that we
have not turned ON the RESET_AFTER_RECONFIG option (see the used fplan.xdc file) (In
earlier labs where it was turned ON, the output was 0).

8-2-5. Close Vivado by selecting File > Exit.

8-2-6. Power OFF the board.

Conclusion

This lab showed you how the partial reconfiguration controller (PRC) can be used to generate software
triggers as well as use hardware triggers to reconfigure RPs. The software application can assign and
change the triggers under the software control. The PRC has the ICAP port which can be connected to
the ICAP resource. The controller also has the memory interface which can be used to load the partial
bitstreams. The designation memory used in this lab is DDR but it can be non-volatile FLASH memory.

