Lab Workbook Creating and Using Platform for an Application

Creating and Using Platform for an Application

Introduction
This lab guides you through the steps of creating a custom platform for an audio application.
Objectives

After completing this lab, you will be able to:

e Create an SDx platform for an custom application

o Use the SDx environment to test the platform for an audio filtering Standalone application
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises three primary steps: You will create an SDx project, test the custom platform, and test
the platform for the filter application.

General Flow for this Lab

Step 1: Step 2: Step 3:
Create a Test the Test the
Custom Custom Platform for
Application
v www.xilinx.com/university Zynqg 7-1
i‘ XILINXJ Xup@xilinx.com

© copyright 2016 Xilinx

Creating and Using Platform for an Application

Lab Workbook

Create a Custom Platform

Step 1

1-1. Launch Vivado, create the platform design, and generate an archive of the

project.
1-1-1. Using the Windows Explorer, copy the zed_audio directory (for Zed) or zybo_audio directory (for
Zybo) from the source\lab7 directory and place it in the c:\xup\SDSoC\labs\lab7 directory.
This will copy all the necessary directories and files, creating the required directory structure.
Note another file (not shown below), called zed_audio_sw.pfm (for Zed) or zybo_audio_sw.pfm,
(for zybo) is provided. Typically this will have to be hand created. The file describes the SDx
software component. It defines file names and locations of the library and boot components.
4] 1ab7 4 i Name -
] ip_repo 4 | zybo_audio)
4 zed_audio) ip_repo
zed_audio.tcl 4| hw .
4 hw _ 8 zybo_audio.tcl
. =| zed_audio vivado _)
> vivado - = zybo_audio
zed_audio_pfm.tcl Ip_repo .
4 samples 4 s zybo_audio_pfm.tcl
audio_sa audio_sa
4 SW o 5W
aarch32-none aarch32-none
boot boot
bsp bsp
standalone standalone
(a) Zed (b) Zybo
Figure 1. The directory structure for creating the SDx platform
Zyng 7-2 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Creating and Using Platform for an Application

<?xml version="1.0" encoding="UTF-8"72>

<sdx:platform sdx:vendor="xilinx.com"
sdx:library="=sdx"
sdx:name="zed_audio"
sdx:version="1.0"
sdx:schemaVersion="1.0"

xmlns:sdx="http://www.xilinx.com/sdx" >

<sdx:description>Platform targeting the ZedBoard for an audio application. More
<sdx:systemConfigurations sdx:defaultConfiguration="standalone">
<sdx:configuration sdx:name="standalone"
sdx:displayName="5tandalone 05 (Zyng 7000)"
sdx:defaultProcessorGroup="ad_0">
<sdx:description>Standalone OS5 running on Zyng 7000</sdx:description>
<sdx:bootImages sdx:default="standard">
<sdx:image sdx:name="standard"
sdx:bif="boot/standalone .bif"
sdx:readme="boot/generic.readme”
/>
</sdx:bootImages>
<s5dx:processorGroup sdx:name="ad_0"
sdx:displayName="a% 0"
sdx:cpulnstance="ps7_cortexad 0"
sdx:cpuType="cortex-as">
<s5dx®:05 sdx:name="standalone"
sdx:displayName="5tandalone Q3"
sdx:includePaths="aarch32-none/include"
sdx:1ldscript="standalone/lscript.ld"
sdx:bspConfig="bsp/system.mss"
/>
</sdx:processorGroup>
</sdx:configuration>
</sdx:systemConfigurations>
</sdx:platform>

Figure 2. The <board>_audio_sw.spfm file content

1-1-2. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > SDx 2016.3 > Vivado
Design Suite > Vivado 2016.3

1-1-3. Inthe Vivado's Tcl Console window change the directory to the
c:/xup/SDSoCl/labs/lab7/zed_audio/hw/vivado/ or c:/xup/SDSoC/labs/lab7/zybo_audio/hw/vivado/
using the cd command.

cd c:/xup/SDSoC/labs/lab7/<zed | zybo>_audio/hw/vivado

1-1-4. Execute the following command to generate the platform hardware.
source ./<zed | zybo>_audio.tcl

This will create an IPI design and an HDL wrapper, and add an xdc constraints file.

v www.xilinx.com/university Zynq 7-3
i‘ XI LINX“‘ Xup@xilinx.com

© copyright 2016 Xilinx

Creating and Using Platform for an Application

Lab Workbook

ing_system7_0
DOR {2 obor
FIXED_0 4 FIXED_IO
ne_14 nci
M_AXT_GP) o [t
{_ xkoncat 0 ———=iM_AXI_GPD_ACLK. W TTO0_WAVED OUTh=
=0[09] o:a) b Q_F2[00) ZYNQ." oo waver ootk
(—J TTO0_WAVE2 OUT b=
oncat
0 FELK_CLKDp—
sm'r.n_:[‘_‘, & FCLK_CLK] pee DFCI.K_CLKI
__rst_processing_system?_0_100M processing_system?_0_axi_periph FOLK_REETON b
. _sync_ck mb,_reset 5 Al ZYNQT Prooessing Systam
1 Bus_struct reset{0-0] = "-’;_“ T
=y reset_in peicheral eset|0:0) (= zed_audio_ctrl_0
-{lll!,ﬂaxq_;n,m ietarconnect_aressn(0.0] pmed R —— | ot
wdem_locked o i MOD_Aoct - f£ s
by i p—s0 pasemuon) mm o0 e Bk~
Processor System Reset MOC_ACLK o&asm I3 : [
= 1100_,
MO1_ACLE.
p—=1101_ARESETH(0:0]
AXI Interconnect
Audio In
jack
(&) Zed
processing_system7_0
LORb DR
FIED_10h FIXED_IO
¢ _idh mc 1
soio_o<s f[]
M_AXI_GPOdR [
GPOACLK EYNQ‘ TTCO_WAVED_OUTR=
processing_system7_{_axi_periph RQF2P[0:0] TTCD WAVEL OUTL-
. TTCO_WAVEZ_OUTE=
b i | 500_AI FOLK_CLD|
— FOLK_CLKI [FOLK_CLK1
PR 0 Dm]m#:i FCLK_RESETO_Np—
—emG00_ARESETN[(:0] [H<=[T T _ ZYNQ7 Proessing System
_ACLK m '
L axi_gpio_0
A0 e 1
1st_processing_system?7_0_100M _ :_ra;::d GPIOR .|—D GPIO
I mb,_resat AX1 Interconnect e arezin
eat_reset_in bus_struct_resat][0: 0]
jau_reset_in peripheral_reset{0:0] xiconcat_0 m‘iﬁéﬁ]gﬁl 0
mb_debug_sys rst interconnect_aresetn[0:0] S
dom_locked peripheral_aresetn[0:0] s HR SAXI Ll E— 1 BCLK
- = - Concat RECDAT PELRCIKE——— [PRIRCIK
ocessor System Reset
REDAT D ; . AXI_ACLK RECLRCIK———{ 7 RECLRCLK
 AKL_ARESETN PBDATAT——————————— 3 PEDATA
zybo_audio_ctrl
(b) zZybo

Figure 3. The IPI design

1-1-5. Since the design contains an audio controller IP, which is not part of the standard Vivado
installation IP, we need to archive the project so the custom IP is part of the platform.

1-1-6. Select File > Archive Project...

1-1-7. Click on the browse button of the Temporary location path and set it to c:\temp or a shorter path.
Change the Archive name to zybo_audio_hw_design. Change the Archive location to
c:/xup/SDSoCl/labs/lab7 or some other place than where the project was created. Uncheck the
Include configuration settings and Include run results check boxes.

Zynq 7-4 www.xilinx.com/university

xup@xilinx.com

© copyright 2016 Xilinx

& XILINX.

Lab Workbook Creating and Using Platform for an Application

¢ Archive Project &J

zybo_audio_hw_design

associated

Create a compressed (.zip) file that contains all t
with this project.

Archive name: zed_audio_hw_design

Archive location: C:fxup,’SDSonIabsflab?i B
Archive file will be created at: C:/.../labs/lab7/zed_audio_hw_design.xpr.zip

Temporary location: | C:/Temp |:|
Include configuration settings

Include run results

\i’ 0K I | Cancel

A m

Figure 4. Archiving the project

1-1-8. Click OK.

This will generate the zed_audio_hw_design.zip or zybo_audio_hw_design.zip file in the
specified directory. Note that although the zip filename is different, the folder inside is still
zed_audio or zybo_audio.

1-1-9. Close the Vivado project by selecting File > Close Project.

1-2. Unzip the archived project and copy the relevant files/directories.

1-2-1. Unzip the zed_audio_hw_design.zip or zybo_audio_hw_design.zip into c:\xup\SDSoc\labs.

This is required since the zip file contains a root folder called zed_audio or zybo_audio.

1-2-2. Using the Windows Explorer, delete all the original files and directories, except the
_audio_pfm.tcl, under the c:\xup\SDSoC\labs\lab7\<board>_audio\hw\vivado directory.

1-2-3. Copy everything from the extracted directory and place them in the
c:\xup\SDSoC\labs\lab7\<board>_audio\hw\vivado directory.

1-2-4. Delete the .cache, .hw, .ip_user_files folders and the .jou, and .log files. Keep only
the .ipdefs, .srcs directories, and the _pfm.tcl, archive_project_summary.txt and .xpr files.

1-3. Open the Vivado project.
1-3-1. Select File > Open Project in Vivado.

1-3-2. Browse to C:/xup/SDSoC/labs/lab7/<zed | zybo>_audio/hw/vivado and select <zed |
zybo>_audio.xpr.

1-3-3. Open the block design.

The block design must be open in order to the next step.

v Xilinx.com/universit Zynq 7-5
£ XILINX e /
© copyright 2016 Xilinx

Creating and Using Platform for an Application Lab Workbook

1-3-4.

1-4-1.

1-4-2.

Change directory by typing the following command in the Tcl console.

cd c:/xup/SDSoC/labs/lab7/<zed | zybo>_audio/hw/vivado

Generate the hardware description for the board.

Source the SDSoC platform creation tcl script by executing the following command:

source -notrace c:/Xilinx/SDx/2016.3/scripts/vivado/sdsoc_pfm.tcl

Replace c:/Xi1inx/SDx/2016 . 3 with the location of your installation if necessary.

Source the provided hardware platform creation tcl file by executing the following command:

source ./<board>_audio_pfm.tcl

Where <board> is either zed or zybo . You can open this file before or after executing it to
examine its contents.

This command will execute the following commands to generate the <board>_audio_hw.hpfm
where <board> is either zed or zybo.

set pfm [sdsoc::create pfm <board>_audio_hw._hpfm]

This script will execute the following commands to generate the <board>_audio_hw.hpfm.
Define VLNV:

sdsoc: :pfm_name $pfm "xilinx.com" *"xd" "<board>_audio" "1.0"
Declare a brief platform description:

sdsoc: :pfm_description $pfm "Zynq <board> with audio codec"

Define the main clock which will be used as the default clock along with any other clock domains
that SDx may use while generating accelerators.

sdsoc: :pfm_clock $pfm FCLK_CLKO processing_system7_0 O true
rst_ps7_0_100M

Note that FCLK_CLKaO is the clock domain which will be used by default. The
processing_system7_0 is the instance name of the processor and
rst_processing_system7_0_100M is the instance name of the processor reset block associated to
the clock domain. The “0” before the true indicates the clock number, and true indicates that this
is the default clock which will be used by SDx, unless the user selects a different clock, for
example, in the case of a multi-clock design.

Declare the platform AXI bus interfaces by executing the following commands:
sdsoc: :pfm_axi_port $pfm M_AXI_GP1 processing_system7_0 M_AXI1_GP

In this section you define the AXI ports which you want SDx to use when connecting accelerators.
In our design, M_AXI_GPQ0 is being used to communicate with the CODEC controller and an AXI
GPIO through the processing_system7_0_axi_periph instance (of AXIl_Interconnect).
Since our FIR filter will connect to the processor using an AXI-Lite interface, the first command
will allow it to connect to M_AXI_GP1.

sdsoc: :pfm_axi_port $pfm S_AXI_ACP processing_system7_0 S_AXI_ACP

Zynq 7-6 www.xilinx.com/university (v X”_lNX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Creating and Using Platform for an Application

1-4-3.

1-5.

1-5-1.

1-5-2.

1-5-3.

1-5-4.

1-5-5.

SDx expects at least one slave interface so the hardware accelerator can use DDR memory and/or
DMA. The above command instructs SDx that S_AXI_ACP may be used for that purpose.

If you would like to allow other interfaces to be used by SDx then use the appropriate commands
from the listed below.

sdsoc: :pfm_axi_port $pfm S_AXI_HPO processing_system7_0 S _AXI_HP
sdsoc: :pfm_axi_port $pfm S_AXI_HP1 processing_system7_0 S _AXI_HP
sdsoc: :pfm_axi_port $pfm S_AXI_HP2 processing_system7_0 S _AXI_HP
sdsoc: :pfm_axi_port $pfm S_AXI_HP3 processing_system7_0 S_AXI_HP
You may see a warning that can be ignored.

Define the available interrupts by executing the following command:

for {set i1 0} {$1 < 16} {incr i} {

sdsoc: :pfm_irg $pfm In$i xlconcat_ O

}

The above command makes all sixteen interrupt pins available to SDx. If the user defined
platform requires some interrupts, they will occupy positions starting at interrupt 0 and in such a
case set 1 0 should be set to the next available interrupts. e.g. if two 2 interrupts are required
by the platform (interrupts 0,1) the SDx interrupts will start at 2. i should be set to 2 in the above
command:.

Generate the platform hardware description metadata file by executing the following command:
sdsoc: :generate_hw_pfm $pfm

This will generate the zed_audio_hw.hpfm or zybo_audio_hw.hpfm file in the vivado directory.

Using the Windows Explorer, copy the *.hpfm file to the c:\xup\SDSoC\labs\lab7\<zed |
zybo>_audio\hw directory.

Export the vivado project and generate the software description.

In Vivado, export the hardware by selecting File > Export > Export Hardware

The Generate Output Products dialog box will appear.

Click on the Generate Output Products button.
This will generate the output products and present another dialog box. Click OK.

The zed_audio.sdk or zybo_audio.sdk directory will be created under the vivado directory.
Click OK to close the critical warning window if displayed.
Close the project by selecting File > Close Project

Using the Windows Explorer, delete the files and directories, under vivado directory, shown in the
red boxes below.

£ XJILINX www.xilinx.com/university Zyng 7-7

Xup@xilinx.com
© copyright 2016 Xilinx

Creating and Using Platform for an Application Lab Workbook

Lo Xil b Xil

| zed_audio.cache | zybo_audio.cache

I zed_audio.hw I zybo_audio.hw

| zed_audio.ip_user_files | zybo_audio.ip_user_files

| zed_audio.ipdefs
| zed_audio.runs

| zed_audio.sdk

I | zed_audio.sim I

| zed_audio.srcs

| zybo_audio.ipdefs
| zybo_audio.runs

I zybo_audio.sdk

I | zybo_audio.sim I

I zybo_audio.srcs

archive_project_summary archive_project_summary
¢ zed audio ¢ zybo_audio
zed_audio_hw.hpfm zybo_audio_hw.hpfm

zed_audio_pfm.tcl

zybo_audio_pfm.tcl

(a) Zed

(b) Zybo

Figure 5. Directory content

1-6. Build the software templates

1-6-1. Open SDx by selecting Start > All Programs > Xilinx Design Tools > SDx 2016.3 > SDx IDE
2016.3
The workspace dialog box will open.

1-6-2. Click on the Browse button, select the
c:\xup\SDSoC\labs\lab7\zed_audio\hw\vivado\zed_audio.sdk (for zed) OR
c:\xup\SDSoC\labs\lab7\zybo_audio\hw\vivado\zybo_audio.sdk (for zybo) directory and click OK.
Click OK again.

«* Warkspace Launcher e - o — M

Select a workspace

Kilinx SDx stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

U MeTy G o Tl cup\ SDSoC\labs\lab7\zed_audio\hw\vivado\zed_audio.sdk i Browse...

» Copy Settings

cxuptsDSoClabsilab7'zybo_audiothwivivado'zybo_audio sdk
® [OK] l Cancel
Figure 6. Selecting the workspace
Zynq 7-8 www.xilinx.com/university i' XILINX

xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook

Creating and Using Platform for an Application

1-6-3. Close the Welcome Page.

1-6-4.
Next.

Select File > New > Project, then expand Xilinx, select Hardware Platform Specification and click

r

«* New Project

Elﬁ1

Select a wizard

Wizards:

type filter text

+ (= Tracing
a (= Xilinx
&) Application Project
&) ARM Trusted Firmware Project
Wl Board Support Package
771 Hardware Platform Specification
(&) Library Project
EA SPM Project
== Xilinx SDx Project...

1

R o
@ < Back

Finish Cancel

L

Figure 7. Creating the hardware platform specification project

The hardware platform specification describes the hardware design. This includes a full system
memory map, the type(s) of processors present, active peripherals in the PS and PL for Zynq
systems or a list of all peripherals for a non-Zynq systems.

Based on this description, software such as the board support package (BSP) and application

can be tailored to the hardware

1-6-5.

Enter zed_audio or zybo_audio as the project name, click on the browse button of Target

Hardware Specification and browse to c:\xup\SDSoC\labs\lab7\<zed |
zybo>_audio\hw\vivado\<zed | zybo>_audio.sdk, select <zed | zybo>_audio_wrapper.hdf, click

Open, and then click Finish.

& XILINX.

Xup@xilinx.com

www.xilinx.com/university

Zynq 7-9

© copyright 2016 Xilinx

Creating and Using Platform for an Application

Lab Workbook

=~ New Hardware Project é@ﬂ
New Hardware Project : J
=
Create a new Hardware Project. I—_. o
Project name: zed_audio
Use default location
Chup\SDSoC\labs\lab7\zed_audio\hw\vivado\zed_audio.sdk\zed_aud Browse...
default -
Target Hardware Specification
Provide the path to the hardware specification file exported from Vivado.
This file usually resides in SDK/SDK_Export/hw folder relative to the Vivado project location.

The specification file and associated bitstream content will be copied into the workspace.
CAxup\SDSoC\labs\lab?\zed_audio\hwi\vivado\zed_audio.sdk\zed_audio_wrapper.hdf
o /\]
[Cxup\sDSoCllabs\iabf'zybo_audio\hwvivado\zybo_audio sdk\zybo_audio_wrapper hdf

T —
@ Next = l Finish l I Cancel

Figure 8. Creating hardware project in SDx

xup@xilinx.com
© copyright 2016 Xilinx

1-6-6. Select File > New > Project, then expand Xilinx and select Board Support Package and click
Next.
1-6-7. Click Finish with standalone_bsp_0 as the Project name, making sure that zed_audio or
zybo_audio is selected as the Hardware Platform.
[=~ New Board Support Package Project l =" $1
Xilinx Board Support Package Project ﬂ
Create a Board Support Package.
Project name: standalone_bsp_0
Use default location
Ch\xup\SDSoC\labs\labT\zed_audio\hw\vivado\zed_audio.sdk\standalone_bsp_0 Browse...
default =
Target Hardware zybo_audio
Hardware Platform: (zed_audio “ VI
CPU: ips?_co rtexad_0 - l
32-bit ~
Board Support Package OS
Standalone is a simple, low-level software layer. It provides access to basic processor
freertos823 features such as caches, interrupts and exceptions as well as the basic features of a hosted
environment, such as standard input and output, profiling, abort and exit.
@ Next = I Finish] { Cancel
Figure 9. Creating the board support package for the platform
The Board Support Package Settings will open.
Zyng 7-10 www.xilinx.com/university

& XILINX.

Lab Workbook Creating and Using Platform for an Application

1-6-8. Select xilffs library and click OK.

1-6-9. Right-click on the standalone_bsp 0 and select build project.

1-7. Generate the FSBL application so the board can be boot from the SD card.

1-7-1. Select File> New > Application Project

1-7-2. Enter fsbl in the Project name field.

1-7-3. For the Board Support Package, select Create New and click Next.

1-7-4. Select Zynq FSBL from the Available Templates pane, and click Finish.

1-7-5. Click Yes to open the C/C++ perspective.

1-7-6. Expand the src folder under the fsbl project in the Project Explorer pane and double-click the
Iscript.ld entry.
Notice that the Heap size is assigned as 0x2000 by default. If your application is going to transfer
a large amount of data using sds_alloc, you may need more Heap space.

1-7-7. Change the Heap size to 0x4000 and then press Ctrl+S to save the changes

1-7-8. Right-click on the fsbl_bsp entry and select build project.

1-7-9. Right-click on the fsbl entry and select build project.
The fsbl.elf file is required to create a bootable SD image.

1-7-10. Using the Windows Explorer, copy the following files and directories
The system.mss file from c:\xup\SDSoC\labs\lab7\<zed | zybo>_audio\hw\vivado\<zed |
zybo>_audio.sdk\standalone_bsp_0\ into
c:\xup\SDSoC\labs\lab7\<zed | zybo>_audio\sw\bsp
The include directory from c:\xup\SDSoC\labs\lab7\<zed | zybo>_audio\hw\vivado\<zed |
zybo>_audio.sdk\standalone_bsp_0\ps7_cortexa9 0 into c:\xup\SDSoC\labs\lab7\<zed |
zybo>_audio\sw\aarch32-none
The Iscript.ld file from c:\xup\SDSoC\labs\lab7\<zed | zybo>_audio\hw\vivado\<zed |
zybo>_audio.sdk\fsbl\src into
c:\xup\SDSoC\labs\lab7\<zed | zybo>_audio\sw\standalone
Copy the fsbl.elf file from c:\xup\SDSoC\labs\lab7\<zed | zybo>_audio\hw\vivado\<zed |
zybo>_audio.sdk\fsb\Debug into c:\xup\SDSoC\labs\lab7\<zed | zybo>_audio\sw\boot

1-7-11. The above copying of the files was done to match what is pointed in the provided
<board>_audio_sw.spfm file.

i' XILINX www.xilinx.com/university Zyng 7-11

Xup@xilinx.com
© copyright 2016 Xilinx

Creating and Using Platform for an Application Lab Workbook

<?2xml wersion="1.0" encoding="UTF-8"2>

<sdx:platform sdx:vendor="xilinx.com"
sdx:library="sdx"
sdx:name="zed audio"
sdx:version="1.0"
sdx:schemaVersion="1.0"

xmlns:sdx="http://www.xilinx.com/sdx" >

<sdx:description>Platform targeting the ZedBoard for an audio application. More
<sdx:systemConfiqurations sdx:defaultConfigquration="standalone">
<sdx:configuration sdx:name="standalone"
sdx:displayName="Standalone 0S5 (Zyng 7000)"
sdx:defaultProcessorGroup="a8_0">
<sdx:description>Standalone OS5 running on Zyng 7000</sdx:description>
<sdx:bootImages sdx:default="standard"> The bif file looks for the
<sdx:image sdx:name="standard"
sdx:bif="boot/standalone .bif"
sdx:readme="boot/generic.readme"”

fsbl.elf in the boot directory

/>
</zdx:bootImages>
<sdx:processorGroup sdx:nams="a2_ 0"
sdx:displayName="Aa% 0"
sdx:cpulnstance="ps7_cortexad 0"
sdx:cpuType="cortex-a9">
<sdx:o0s sdx:name="standalone"
sdx:displayName="Standalone OS"
sdx:includePaths="aarch32-none/include"
sdx:ldscript="standalone/lscript.ld"
sdx:bspConfig="bsp/system.mss"

/>
</sdx:processorGroup>
</sdx:configuration>
</sdx:systemConfigurationss>
</sdx:platform>

Figure 10. The <board>_audio_sw.spfm file

Test the Built Platform Step 2

2-1.

In SDx change the workspace to c:\xup\SDSoC\labs\lab7. Create a new SDx
project called audio_test using zed_audio or zybo_audio as the platform
and Standalone as the OS, and selecting Audio Playback template provided
in the samples directory.

2-1-1. In SDx change the workspace to c:\xup\SDSoC\labs\lab7 by selecting File > Switch Workspace
> other.

2-1-2. Click OK.

2-1-3. Close the Welcome page.

2-1-4. Click on the Create SDx Project in the Welcome tab or select File > New > Xilinx SDx Project

2-1-5. Enter audio_test in the Project name field and click Next.

Zyng 7-12 www.xilinx.com/university i: XILINX@

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Creating and Using Platform for an Application

2-1-6. Click Add Custom Platform..., browse to c:\xup\SDSoC\labs\lab7 and select either zed_audio

or zybo_audio and click OK.

The custom platform entry will appear in the available.

-

- New Project »

S X

Choose Hardware Platform

The platform defines the hardware that will execute your application.

Basic platform targeting the MicroZedBoard, which includes 1 GB of DDR3, 128 Mb
QSPI Flash and a MicroSD card interface. More information at
http://www.zedboard.org/products/microzed

Repository: C/Xilinx/SDx/2016.3/platforms/microzed

Platforms (7) FEilter
Find:
Name Version Board Family Part Vendor Type
A microzed 1.0 microzed zyngq xc7z010 xilink.com SDSoC
@ zc702 1.0 zc702 zyng xc7z020 xilinc.com SDSoC
E zc706 1.0 zc706 zyng xc7z045 xilinc.com SDSoC
A zcul02 1.0 zcul02 zynguplus xczu9eg xilinkcom SDSoC
A zed 1.0 zed zyng ¥c7z020 xalinx.com SDSoC
| @ zed_audio (custom) 1.0 zed_audio zyng ¥c7z020 xilink.com SDSoC |
E zybo 1.0 zybo zyng xc7z010 xilink.com SDSoC
Add Custom Platform...l lManage Repositories...
Description

@' < Back " Next > Finish
(&) Zed

iv XI LINX www.xilinx.com/university

Xup@xilinx.com
© copyright 2016 Xilinx

Zynqg 7-13

Creating and Using Platform for an Application

Lab Workbook

=* New Project =] ﬁ

Zyng Zybo with audio codec

Repository: C/xup/SDSoC/labs/lab7/zybo_audio

Choose Hardware Platform Y 4
i
The platform defines the hardware that will execute your application.
Platforms (7 Filter
Find:
MName Version Board Family Part Vendor Type
A microzed 1.0 microzed zyng ¥c/7z010 alinkcom SDSoC
@ zc702 1.0 zc702 zyng %c7z020 xilinx.com SDSoC
H zc706 1.0 zc706 zyng xc7z045 xilinx.com SDSoC
A zcul02 1.0 zcul02 zynquplus xczuBeg xilinkcom SDSoC
A zed 1.0 zed zynqg xc7z020 xilink.com SDSoC
A zybo 1.0 zybo zyng ¥c7z010 xilink.com SDSoC
|® zybo_audio (custom) 1.0 zybo_audio zyng xc7z010 xilink.com SDSoC |
Add Custom Platform‘..] IManage Repositories...
Description

® < Back l[Next > Finish

L

(b) Zybo

Figure 11. Selecting and adding the custom platform

2-1-7. Select zed_audio or zybo_audio and click Next.

2-1-8. For the OS, select Standalone.

2-1-9. Click Next.

The Templates window will be displayed with Audio Playback as one of the two possible
templates. This entry is picked up from the samples directory of the created platform.

EE New Project

e

Templates

Available Templates:

Empty Application Simple test application
Audio Playback

Figure 12. Selecting a test template

Create one of the available templates to generate a fully-functioning SDSoC project.

Zyng 7-14 www.xilinx.com/university
Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook Creating and Using Platform for an Application

2-1-10.

2-1-11.

Select the Audio Playback application and click Finish.

Expand the audio_test entry in the Project Explorer pane and note the two source files (audio.h
and audio.c) make up the application.

5 Project Explorer &

» mi Includes

4 = 5rC
> g audio.c
: [0 audio.h
Makefile
A& project.sdsoc

Figure 13. Test application directory

The audio.c application configures the CODEC, samples the CODEC and writes back into the
CODEC llustrating the platform does function.

2-1-12. Uncheck Generate SD Card Image box as we will test it using JTAG mode.

2-1-13. Right-click on the audio_test entry and select Build Project.

2-2. Connect the board and test the application.

2-2-1. Connect an audio patch cable between the PC’s headphone output and Line-In connector of the
board.

2-2-2. Connect a headphone to the Line Out connector (on Zed) or HPH OUT connector (on Zybo) of
the board.

2-2-3. Connect the board and power it ON.

2-2-4. Right-click on the audio_test folder and select Run As > Launch on Hardware (SDSoC
Debugger) to run the application.
This will download the bit file to configure the FPGA, download the audio_test.elf application, and
run the application.

2-2-5. Play some music on the PC and you should be able to hear the same on your headphone.

2-2-6. When satisfied, power OFF the board.

(' XILINX www.xilinx.com/university Zyng 7-15

Xup@xilinx.com
© copyright 2016 Xilinx

Creating and Using Platform for an Application Lab Workbook

Test the Platform for the Filter Application Step 3

3-1. Create a fir_test application targeting the custom platform and Standalone
OS. Import the provided audio.h, audio.c, and fir_test.c files from the
c:\xup\SDSoC\source\lab7 folder.

3-1-1. Select File > New > Xilinx SDx Project

3-1-2. Enter fir_test in the Project name field and click Next.

3-1-3. Select either zed_audio or zybo_audio and click Next.

3-1-4. Select Standalone as the Target OS and click Next.

3-1-5. Select Empty Application template and click Finish.

3-1-6. Expand fir_test > src, right-click on the src folder and select Import...
3-1-7. Expand General, select File System and click Next

3-1-8. Browse to c:\xup\SDSoC\source\lab7, and import audio.c, audio.h, fir_coef.dat and fir_test.c
files.

3-1-9. Add the fir function in the HW Function panel.

A java error message may appear. Click OK to ignore it.

3-1-10. Right-click on the fir_test entry in the Project Explorer panel, and select Build Project.

This will take about 15 minutes.

3-1-11. When the build is complete, using the Windows Explorer, copy the BOOT.BIN file from
c:\xup\SDSoC\labs\lab7\fir_test\Debug\sd_card into the SD card.

3-2. Connect the board and test the application.

3-2-1. Connect an audio patch cable between the PC’s headphone output and Line-In connector of the
board.

3-2-2. Connect a headphone to the Line Out connector (on Zed) or HPH OUT connector (on Zybo) of
the board.

3-2-3. Connect the board and power it ON.

3-2-4. Right-click on the fir_test folder and select Run As > Launch on Hardware (SDSoC Debugger)
to run the application.

This will download the bit file to configure the FPGA, download the fir_test.elf application, and run
the application.

Zyng 7-16 www.xilinx.com/university v
Xup@xilinx.com (A XI I_INX_,,

© copyright 2016 Xilinx

Lab Workbook Creating and Using Platform for an Application

3-2-5. Play some music on the PC and you should be able to hear the same on your headphone.
3-2-6. When satisfied, turn OFF the board and exit the SDx program.
3-3. Open Vivado and view the built design.
3-3-1. Start Vivado by selecting Start > All Programs > Xilinx Design Tools > SDx 2016.3 > Vivado
Design Suite > Vivado 2016.3
3-3-2. Click the Open Project link, open the design by browsing to
c:\xup\SDSoC\labs\lab7\fir_test\Debug\ sds\pO\ipi and selecting either the zybo_audio.xpr or
zed_audio.xpr.
3-3-3. Click on Open Block Design in the Flow Navigator pane. The block design will open.
3-3-4. Click on the show interface connections only (':') button followed by click on the regenerate
layout (@9) button.
processing_system7_0
DoR: ||} {>DDR
FIXED_IO<- H BFIXED_[O
- C_ 14k 1IC_1
ZYNO " Af([mg;gi " axificﬁp:ce%\ngfsyStem?foMﬁAX[ﬁGP1 fir 1 fir_1
- = + H—H == Vivado™ HLS
- MAXL_GP1L - +sm7m|:|§|:|mmim+ 3| dnS_AXT ap_ ctrlefe || | 4-ap_ctri [:I \
AXT Interconnect “Fir (Pre-Production)
|_ ps7_0_axi_periph (w]
O 5t 51 GPIOS | [Dcrio
mE|) | zybo_audio_ctrl_0
AXI Interconnect o
7| S A
:y‘bﬂmjcul
Figure 14. The generated block design
You can see Fir filter instance and the datamover adapter.
3-3-5. Close Vivado by selecting File > Exit
Conclusion

In this lab, you created a custom platform utilizing an audio CODEC IP in the base design. You then
created a test application using the provided test template to test the custom platform. You then created a
user application, importing the provided source files, targeted a fir function in hardware and then tested
the application.

v www.xilinx.com/university Zynq 7-17
i‘ XI LINX” Xup@xilinx.com

© copyright 2016 Xilinx

