Day 1

Course Outline

- **UltraFast Design Methodology: Design Closure** (Lecture)
- **Vivado Design Suite Non-Project Mode** (Lecture)
- **Baselining** (Lecture, Lab, Demo)
- **Pipelining** (Lecture, Lab)
- **Inference** (Lecture, Lab)
- **Revision Control Systems in the Vivado Design Suite** (Lecture, Lab)
- **Timing Simulation** (Lecture, Lab)
- **Synchronization Circuits** (Lecture, Lab, Case Study)

Course Description

This course demonstrates timing closure techniques, such as baselining, pipelining, synchronization circuits, and optimum HDL coding techniques that help with design timing closure. This course also shows you how to debug your design using advanced capabilities of the Vivado® logic analyzer.

- **Level** – FPGA 3
- **Course Duration** – 2 days
- **Course Part Number** – FPGA-VDES3-ILT
- **Who Should Attend?** – FPGA designers with intermediate knowledge of HDL and FPGA architecture and some experience with the Vivado Design Suite

Prerequisites

- Designing FPGAs Using the Vivado Design Suite 1 course
- Designing FPGAs Using the Vivado Design Suite 2 course
- Intermediate HDL knowledge (VHDL or Verilog)
- Solid digital design background

Optional Videos

- Basic HDL Coding Techniques*
- Power Estimation*

Software Tools

- Vivado Design or System Edition 2017.1
- Architecture: UltraScale™ and 7 series FPGAs**
- Demo board: Kintex®-7 FPGA KC705 board

* Go to www.xilinx.com/training and click the Online Training tab to view these videos.

** This course focuses on the UltraScale and 7 series architectures. Check with your local Authorized Training Provider for specifics or other customizations.

After completing this comprehensive training, you will have the necessary skills to:

- Employ good alternative design practices to improve design reliability
- Define a properly constrained design
- Apply baseline constraints to determine if internal timing paths meet design timing objectives
- Optimize HDL code to maximize the FPGA resources that are inferred and meet performance goals
- Build a more reliable design that is less vulnerable to metastability problems and requires less design debugging later in the development cycle
- Increase performance by utilizing FPGA design techniques
- Use Vivado Design Suite reports and utilities to full advantage, especially the Clock Interaction report

Course Specification

- **Report Clock Interaction** (Lecture, Demo)

Day 2

- **Report Datasheet** (Lecture, Demo)
- **Dynamic Power Estimation Using Vivado Report Power** (Lecture, Lab)
- **Configuration Modes** (Lecture)
- **JTAG to AXI Master Core** (Lecture, Demo)
- **Debug Flow in an IP Integrator Block Design** (Lecture, Lab)
- **Remote Debugging Using the Vivado Logic Analyzer** (Lecture, Lab)
- **Trigger Using the Trigger State Machine in the Vivado Logic Analyzer** (Lecture, Lab)
- **Introduction to the Xilinx Tcl Store** (Lecture, Demo)
- **Manipulating Design Properties Using Tcl** (Lecture, Lab)

Topic Descriptions

Day 1

- UltraFast Design Methodology: Design Closure – Introduces the methodology guidelines covered in this course.
- Vivado Design Suite Non-Project Mode – Create a design in the Vivado Design Suite non-project mode.
- Baselining – Use Xilinx-recommended baselining procedures to progressively meet timing closure.
- Pipelining – Use pipelining to improve design performance.
- Inference – Infer Xilinx dedicated hardware resources by writing appropriate HDL code.
- Revision Control Systems in the Vivado Design Suite – Use version control systems with Vivado design flows.
- Timing Simulation – Simulate the design post-implementation to verify that a design works properly on hardware.
- Synchronization Circuits – Use synchronization circuits for clock domain crossings.
- Report Clock Interaction – Use the clock interaction report to identify interactions between clock domains.

Day 2

- Report Datasheet – Use the datasheet report to find the optimal setup and hold margin for an I/O interface.
- Configuration Modes – Understand various configuration modes and select the suitable mode for a design.
- JTAG to AXI Master Core – Use this debug core to write/read data to/from a peripheral connected to an AXI interface in a system that is running in hardware.
- Debug Flow in an IP Integrator Block Design – Insert the debug cores into IP integrator block designs.
- Remote Debugging Using the Vivado Logic Analyzer – Use the Vivado logic analyzer to configure an FPGA, set up triggering, and view the sampled data from a remote location.
- Trigger Using the Trigger State Machine in the Vivado Logic Analyzer – Use trigger state machine code to trigger the ILA and capture data in the Vivado logic analyzer.
- Introduction to the Xilinx Tcl Store – Introduces the Xilinx Tcl Store.
- Manipulating Design Properties Using Tcl – Query your design and make pin assignments by using various Tcl commands.
Register Today

Xilinx’s network of Authorized Training Providers (ATP) delivers public and private courses in locations throughout the world. Please contact your closest ATP for more information, to view schedules, or to register online.

Visit www.xilinx.com/training and click on the region where you want to attend a course.

Americas, contact your training provider at www.xilinx.com/training/atp.htm#NA or send your inquiries to registrar@xilinx.com.

Europe, contact your training provider at www.xilinx.com/training/atp.htm#EU or send your inquiries to eurotraining@xilinx.com.

Asia Pacific, contact your training provider at www.xilinx.com/training/atp.htm#AP, or send your inquiries to education_ap@xilinx.com, or call +852-2424-5200.

Japan, contact your training provider at www.xilinx.com/training/atp.htm#JP, or send your inquiries to education_kk@xilinx.com, or call +81-3-6744-7970.